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Abstract

The conversion of a three-dimensional acoustic data set into an equivalent

two-dimensional acoustic data set are essential for seismic interpretation

where the amplitude is a key issue. The transfer function for such a trans-

formation should be estimated and we propose to proceed to this construc-

tion through the computation of the pressure field when considering the

Helmholtz equation. Ray theory is used in order to improve the homoge-

neous transfer function that is typically applied to three-dimensional data

to obtain the input two-dimensional data set used in many inversion al-

gorithms. The improved transfer function uses a uniform expansion that

directly includes the source singularity. The entire useful frequency band-

width is more accurately preserved by using the uniform expansion. A

synthetic example is presented for the Helmholtz equation for the borehole

geometry encountered in cross-well radar experiments.
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1. Introduction

Considerable effort and expertise has been expended in inverting ac-

quired three-dimensional data in applied geophysics, significantly in whole

earth seismology, exploration seismology and in near-surface geophysical ap-

plications. Moreover, recent investigations such as full waveform inversion

exploits preserved or true amplitudes of seismic signals in a broad frequency

range. In this paper we will present a pre-processing step which will trans-

form data collected in the real three dimensional Earth into data as if it

were collected in a two dimensional domain. The methodology is presented

in the context of the Helmholtz equation, but it can be extended to more

general wave equations, appearing in ground-penetrating radar (GPR) or

in elastodynamics. In the context of inversion, preserving the entire band-

width in current broadband recording (Pratt et al., 1996, 1998) is a critical

feature in any data transformation such as the transfer function obtained

through uniform asymptotic expansions of the solution of the Helmholtz

equation in two and three dimensions.

2. Theory

2.1. Ray Tracing Background

In this section, we will briefly review the common ray tracing ansatz

and describe where it breaks down when considering the solution near the

source. References are available in the review article (Virieux and Lambaré,
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2007). The equation which we will use throughout this article is the two

or three-dimensional Helmholtz equation for the pressure field. In three

dimensions, this equation is given by

∇2P +
ω2

v2(x, y, z)
P = δ(x− x′)δ(y − y′)δ(z − z′), (1)

where the pressure field is denoted by P , the angular frequency by ω and

the wave velocity by v(x, y, z). The Cartesian coordinate system has been

implicitly introduced. An analogous equation holds in two dimensions and

is given by

∇2P +
ω2

v2(x, z)
P = δ(x− x′)δ(z − z′). (2)

The standard ansatz used for the ray tracing solution (Karal and Keller,

1959; Keller, 1978) in a three-dimensional medium is given by

P (x, y, z, ω) = exp(−iωT (x, y, z))

∞
∑

n=0

An(x, y, z)

(iω)n
, (3)

where T (x, y, z) is the travel-time function and the terms An are a set

of amplitude coefficients. The usual technique is to substitute the ansatz

(3) into the inhomogeneous Helmholtz equation (1) in order to obtain a

hierarchy of equations by setting each coefficent of powers of ω to zero. The

coefficient of ω2 is the eikonal equation given by

[∇T (x, y, z)]2 =
1

v2(x, y, z)
. (4)

Please note the natural introduction of the square of the slowness, the in-

verse of the velocity.

The remaining equations in the hierarchy are the transport equations

for the coefficients in the ansatz (3) and are given by

[

2 (∇An · ∇T ) + An∇2T
]

= −∇2An−1, n = 0, 1, · · · , (5)
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where we have dropped out the arguments of these terms. Once the travel-

time function T (x, y, z) has been computed, in principal, the solutions to

the transport equation hierarchy can be obtained recursively. In general

at most two coefficients in the hierarchy are computed for computing the

pressure solution, with the challenge being the calculation of the Laplacian

of the travel-time function. While it is well-known that T (x, y, z) can be

multi-valued, we consider the case in which the travel-time is single-valued

in this paper.

One could compute the travel-time function, T (x, y, z), through wave-

front evolution by solving the eikonal equation (4) (Vidale, 1988, 1990;

Lambaré et al., 1996; Zhao, 2005) or through the method of characteristics

(Courant and Hilbert, 1966). For the second method, a set of coupled or-

dinary differential equations need to be solved. The first set, describes the

tangent unit vector t̂ to the ray, which in isotropic media is normal to the

level surfaces of T (x, y, z) which represent the wavefront. Therefore, if we

paramaterize progression along the ray by the arclength s, directly from the

eikonal equation, we obtain the unit tangent vector given by

t̂ = v∇T (6)

=

(

dx

ds
,
dy

ds
,
dz

ds

)

.

The second set of differential equations describes the curvature, or rate of

change of the unit tangent vector, and is given by

dt̂

ds
= −1

v
∇ ln v. (7)

There is a well-known issue with the solution to the transport equations that

is embedded in the calculation of the Laplacian of the travel-time function,
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T (x, y, z). There can be singular curves, known as line caustics, or focal

points, known as point caustics, at which ∇2T (x, y, z) is undefined. The

problem with these singular curves is obviated by using the KMAH index

for matching solutions before and after these caustics with an increment

of a 90◦ phase shift for line caustics and a 180◦ phase shift for point caus-

tics. However, the proper representation of an initial focal point, the source

function for the Helmholtz equation, is not as easy as we do not have the

solution before crossing this focal point. We discuss this important issue in

the next section by considering an ad-hoc asymptotic expansion.

2.2. Uniform Asymptotic Ray Expansions

In the classical calculation of the amplitude coefficients, the cross-sectional

area of a ray tube is computed via an appropriate Jacobian, and the ratio of

the square roots of Jacobians is used to obtain a new amplitude value from

a previous amplitude value (Cerveny, 2001). Since the Jacobian vanishes

at a point source in three dimensions or a line source in two dimensions,

the foregoing ray method is not sufficient and we must proceed differently.

That involves surrounding either the point source or line source by a homo-

geneous medium on the boundaries of which both travel-times and initial

ray amplitude can be computed. Since we know the exact Green’s function

for the case of a homogeneous medium in either three or two dimensions,

we must estimate the initial values of the ray amplitudes on the boundary

separating the homogeneous region from the surrounding inhomogeneous

region. A problem with this solution, is that it is not clear where the homo-

geneous region should end and where the true inhomogeneous region should

begin. Such a matching technique, based on canonical problems, is termed
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non-uniform.

To alleviate this problem, we modify the ansatz used in the ray method.

The solution is singular at the source which is a line caustic in two di-

mensions and a point caustic in three dimensions (Zauderer, 1970). In

the conventional ansatz, (3), we are trying to model the singularity of the

source by a “smooth” expansion. Therefore, reshaping the ray ansatz could

be achieved through the replacement of the plane wave eikonal formulation

consisting only of the phase term by an alternative ansatz which includes an

appropriate amplitude correction. The motivation for choosing this ansatz

derives from the exact three-dimensional and two-dimensional solutions as

represented by the Green’s function for the Helmholtz equation in a ho-

mogeneous acoustic medium. Thus we automatically include the source

singularity.

2.2.1. Three-Dimensional Uniform Ansatz

For the three dimensional case, the uniform expansion is given by (Yedlin

and Virieux, 2010)

P (x, y, z) = − exp(−iωT (x, y, z))

4πv(x, y, z)T (x, y, z)

∞
∑

n=0

An(x, y, z)

(iω)n
. (8)

The travel-time function T (x, y, z) represents the wavefront travel-time and

the set of An(x, y, z) comprises the asymptotic expansion coefficients, which

represent the amplitudes. In contrast to the two-dimensional problem to be

discussed below, the three-dimensional problem only requires one expansion

(Avila and Keller, 1963). A different formulation of the uniform expansion

is also given by Babich (Babich, 1965, 1991).

Substitution of the expression (8) into the Helmholtz equation (1) results

in the usual hierarchy of equations by setting coefficients of powers of ω to
6



zero. As for the standard ansatz, the leading term in the hierarchy gives

the eikonal equation (4). A modified transport equation is obtained, which

can be solved recursively. In this research, we will focus only on the first

term of the expansion, which dominates for high frequencies. The transport

equations for A0(x, y, z) in three dimensions is given by

2∇T (x, y, z) · ∇B0(x, y, z) +B0(x, y, z)∇2T (x, y, z) = 0, (9)

with

B0(x, y, z) =
A0(x, y, z)

v(x, y, z)T (x, y, z)
. (10)

Dropping the explicit dependence on the coordinates (x, y, z) and using the

directional derivative along a ray parameterized by the arc-length s, we

obtain the operator equivalence defined by

2∇T · ∇ =
2

v

d

ds
. (11)

Using (11), we can re-write the transport equation (9) as an ordinary differ-

ential equation along the ray as a function of the arc length s. The initial

conditions, in three dimensions, depend on two parameters describing the

behaviour off the ray, q1 and q2. Therefore, as shown by Cerveny (2001), we

have
2

v

d

ds

(

A0

vT

)

+
A0

vT

1

J

d

ds

(

J

v

)

= 0, (12)

where the Jacobian of the ray transformation J is directly related to an

element of wavefront dS around the ray under consideration. That is,

dS = JdΩ = Jdq1dq2. (13)

We may insist that the Jacobian estimation depends on the coordinate sys-

tem that we are free to select. Completeness is provided by the summation
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over a sphere of arbitrarily small radius R, such that

4πR2 = S =

∫

R

dS =

∫

R

JdΩ = J

∫

R

dΩ = 4πJ, (14)

where the Jacobian J = JΩ is per solid angle. If one wants to consider spe-

cific coordinates as take-off angles, which are usual parameters for the off-ray

spatial evolution related to a specific Jacobian Jq, we have the explicit rela-

tion Jq = JΩ sin θ0 as the surface coordinate element is dΩ0 = sin θ0dθ0dφ0

where the initial dipping angle is θ0 and the initial azimutal angle is φ0.

The solution of the transport equation (12) is given as a function of the arc

length s by

A0(s) =

√

v(s)3T 2(s)/JΩ(s)

v(s0)3T (s0)2/JΩ(s0)
A(s0). (15)

In the limit as the source arc length s0 approaches the true source location

0, the amplitude A(s0) approaches the unity. Both v(s0)
2T (s0)

2 and JΩ(s0)

approach R2. Combining these results and letting the quantity s0 approach

zero yields

A0(s) =

√

v(s)2T (s)2

JΩ(s)

√

v(s)

v(s0)
. (16)

Substitution of the amplitude expression (16) into the ansatz (8), while

keeping only the first term in the sum, results in the final representation of

our pressure field, given by

P (s) = − 1

4π

A0(s)

v(s)T (s)
e−iωT (s)

= − 1

4π

1
√

JΩ(s)

√

v(s)

v(s0)
e−iωT (s). (17)

In the equation (17), the ray is parameterized by the arc length s which

implicitly is a function of all three spatial coordinates. Besides the arc
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length, the ray is also parameterized by two additional parameters, which

are related to the Jacobian calculation. We shall use the two angles θ and φ

sampling the domain off of the ray in our specific applications. The equation

(17) is one ingredient of the contruction of our transfer function, while we

need to derive the second ingredient through the uniform ansatz in two

dimensions.

2.2.2. Two-Dimensional Uniform Ansatz

Due to the nature of wave propagation in two dimensions, designing a

uniform expansion that includes the source singularity is much more compli-

cated. Thus, the Green’s function does not have a simple oscillating struc-

ture as in three-dimensional geometry. The Hankel function H2
0 , which is

the two-dimensional Green’s function, when expanded in the far field via the

appropriate asymptotic expansion, has an exponential phase term. Follow-

ing the ansatz proposition of Yedlin (1987), we mau consider the following

two-dimensional ansatz:

P (x, z) = − 1

4i
H

(2)
0 (ωT (x, z))

∞
∑

n=0

An(x, z)

(iω)n

− 1

iω
[ωT (x, z)]H

(2)
1 (ωT (x, z))

∞
∑

n=0

Bn(x, z)

(iω)n
. (18)

The reason for considering two terms can be understood through the be-

haviour of the two-dimensional wave equation. Far away from the source,

it is exponential in nature, while near the source, the quasi-static version of

the equation is logarithmic, a direct consequence of the fact that we are solv-

ing a Poisson equation. This contrasts strongly with the three-dimensional

wave equation, which uniformly approaches the inverse distance singularity,

as the distance from the source tends to zero.
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Substitution of this ansatz (18) into the Helmholtz equation (2) results

again in the eikonal equation in two dimensions and a coupled set of trans-

port equations. We will need to compute T (x, z) via the eikonal equation

and the amplitude A0(x, z) via a modified transport equation. The trans-

port equation this time is much simpler than the the 3D equation (9) and

is given by

2∇T (x, z) · ∇A0(x, z) +

[

∇2T (x, z)− (∇T (x, z))2

T (x, z)

]

A0(x, z) = 0. (19)

Following the same procedure as in the thre-dimensional case, we convert

the transport equation (19) into an ordinary differential equation for A0(s):

1

A0(s)

d A0(s)

ds
+

1

2

[

v(s)

J(s)

d

ds

(

J(s)

v(s)

)

− 1

T (s)

dT (s)

ds

]

= 0, (20)

where the Jacobian is such that 2πR =
∫

R
Jdθ = 2πJ for a circle of arbi-

trarily small radius R. The solution can be written as the expression

A0(s) =

√

v(s)T (s)/J(s)

v(s0)T (s0)/J(s0)
A(s0). (21)

Since the wavefront radius of curvature is equal to the product of the ve-

locity and the wavefront travel-time, in the limit as the source arc length s0

approaches the source value 0, the amplitude term A(s0) approaches unity

and so does the ratio v(s0)T (s0)/J(s0). Therefore, one may express the

leading amplitude term as

A0(s) =

√

v(s)T (s)

J(s)
. (22)

Substitution of the amplitude expression (22) into the leading term of the 2D

ansatz (18) results in our final asymptotic solution for the two-dimensional
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pressure field, given by

P (s) = − 1

4i
H2

0 (ωT (s))

√

v(s)T (s)

J(s)
. (23)

We will now use this two-dimensional pressure field and the three-dimensional

pressure field given by (17) for the construction of the desired transfer func-

tion.

2.3. Transfer Function Algorithm

The purpose of the transfer function to convert the three-dimensional

data collected in the field into two-dimensional data which will be used for

inversion. In order to do this, we equate the ratio of data to the pressure

fields obtained previously. Thus we have

3DData

3DPressurefield
=

2DData

2DPressurefield
. (24)

The previous ratio can be viewed as equating the two data fields after

the division as a deconvolution. Thus we can define our transfer function

denoted by TF as the ratio of the 2D solution (23) to the 3D solution (17),

which leads us to the asymptotic expression

TF =

[

− 1

4i
H2

0 (ωT (s))

√

v(s)T (s)

J2D(s)

]

/

[

− 1

4π

√

1

J3D(s)

√

v(s)

v(0)
e−iωT (s)

]

,

(25)

where the pure imaginary complex number is denoted by i. In the far field,

we can expand the Hankel function asymptotically through the equation

H2
0 (ωT (s)) ∼

√

2

πωT (s)
e−iωT (s)eiπ/4 (26)
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and we obtain the approximate far-field asymptotic transfer function as

TF =

√

2πv(0)

ω

√

J3D(s)

J2D(s)
exp

(

−i
π

4

)

. (27)

The far-field asymptotic transfer function defined by the expression (27) is

the operator to be used in inhomogeneous acoustic media, for which ray

theory is valid, and is an extension of the results presented by Bleistein

(Bleistein, 1986) and Williamson (Williamson and Pratt, 1995). If we are

not in the far field, then the full asymptotic expression (25) should be used.

The expression (27) includes source effects in a uniform fashion: it is a

generalization of the results presented by Ernst et al. (2007) based on the

work of Bleistein (Bleistein, 1986).

3. Numerical Experiments

In this section, we present a numerical illustration of the transfer func-

tion application which has been derived in the previous section. To il-

lustrate the method, we choose a vertically inhomogeneous medium with

v(z) = 1/
√
a+ bz m/s, where a = 1 s2/m2 and b = −0.08 s2/m3 which is

related to the square of the slowness providing the simple analytical solu-

tion one can think about when considering non-homogeneous media. The

two-dimensional domain is chosen to be a region of 10 m by 10 m, while

the three-dimensional domain has the same two-dimension extension with

an additional transverse dimension of 5 m. Both solutions are computed

using a finite difference Helmholtz solver with ∆x = ∆y = ∆z = 1/30

of the shortest wavelength. The computational domain is surrounded by

a stretched coordinate perfectly matched layer (Chew et al., 1997). The

frequency is 1 Hz, with the point source located at (x = 0, y = 0, z = 0)
12



in three dimensions, and a line source at (x = 0, z = 0) in two dimensions.

In Fig. 1, results from the two-dimensional finite-difference Helmholtz solver

are presented. In Fig. 2, a slice of the three-dimensional data volume, cor-

responding to (x, y = 0, z) is shown. Comparison of these figures clearly

shows the difference in amplitudes of the two and three-dimensional wave-

fields.

(a) (b)

Figure 1: Real part of the wave-field obtained (a) using the two-dimensional

finite difference solver for the Helmholtz equation, and (b) using numerical

or analytical ray tracing.

In order to implement the transfer function (27), the wavefield travel-

time function T (x, z) is needed as well as the Jacobian. We have computed

the travel-time field and consequently associated rays using two methods: a

fast sweeping method for the eikonal equation (Zhao, 2005) described as nu-

merical wavefront ray tracing (opposedto the numerical standard ray tracing

(Courant and Hilbert, 1966)) and the analytical solution for the square of

the slowness (Cerveny, 2001), which are indistinguishable as shown in Fig. 3:
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(a) (b)

Figure 2: Real part of the wavefield obtained (a) using the three-dimensional

finite difference solver for the Helmholtz equation, and (b) using numerical

or analytical ray tracing.

rays end at a set of vertical borehole receivers located at x = 10 m. In the

wavefront ray tracing strategy, rays are obtained by following the travel-time

gradient backwards from each receiver to the source along with travel-time

contours at one second intervals and match exactly the analytical solution

as we have verified. Once the ray is given, computing numerically the Jaco-

bian is performed by solving the paraxial ray tracing which matches exactly

the analytical solution given by Virieux (1996). We, therefore, have ingre-

dients for computing the transfer function in this inhomogeneous simple

medium, but we could consider for realistic applications more complex me-

dia through the numerical ray tracing we have implemented. Fig. 4 is a

comparison of numerical transfer function by taking the ratio of the 2D

and 3D finite-difference solutions of the Helmholtz equation and of those

asymptotic transfer function using the complete expression (25) and the far-
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Figure 3: Travel-time field computed using the fast sweeping method, with

the associated rays and travel-time contours.

field approximation (27). The phase and modulus of the transfer function

are shown separately for all borehole locations at x = 10 m and z ranging

from 0 m to 10 m. The numerical transfer function phase oscillates within

1◦ of the far-field asymptotic result of −45◦. Similarly, the modulus of

the numerical transfer function is extremely close to the modulus obtained

for both the asymptotic transfer function and its far-field approximation.

The foregoing validates the proposed candidate, the expression (25) and the

approximation (27) for the transfer function.

We apply these two transfer functions to the three-dimensional wave-

field computed numerically (see Fig.2a), obtaining simulated 2D wavefields

(see Fig. (5)) which are close to the numerically computed wavefield (see

Fig.1a), illustrating the accurate transformation obtained by the asymp-

totic transfer functions. Fig. 6 represents the relative error which shows

that we dramatically improve the precision of the transfer function trans-
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formation by using the full asymptotic transfer function we have designed

and not its far-field approximation, underlining the accuracy of ansatzs we

have proposed for 3D and 2D asymptotic solutions near the source.

Figure 4: Comparison of phase (upper panel) and modulus (lower panel)

of numerical, full and far-field asymptotic transfer functions with gradient

b = −0.08 s2/m3.

4. Discussion

Although the asymptotic transfer function we have built is quite ac-

curate, some departures from exact ratio between numerical 2D and 3D

solutions are observed. These deviations are coming from the ray approxi-

mation as we are confident in numerical solutions of the Helmholtz equation

with minimal numerical dispersion since we have considered a minimal wave-

length of at least 30 grid intervals. The asymptotic transfer function itself

is computed on the basis of ray theory, for which it is assumed that

1

v

dv

dz
≪ f

v
, (28)
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(a) (b)

Figure 5: Two-dimensional wavefield -left panel (a)- obtained by using the

full asymptotic transfer function (25) and two-dimensional wavefield -righ

panel (b)- obtained by using the far-field approximation of the asymptotic

transfer function (27)

where f = 1 Hz. The velocity gradient at z = 10 m, corresponding to

the deepest ray, i.e. .45 Hz, which is not much, much less than unity,

and thus likely accounts for the discrepancy. A reduction in the velocity

gradient will reduce the discrepancy. Indeed, numerical experiments with

b = −0.04 s2/m3, with f = 1 Hz, demonstrated that this is the case,

as shown in Fig. 7. Improvement of the modulus in Figs. 7 and 4 is

quite clear as well as for the phase when considering the full asymptotic

transfer function. Again, we have an illustration of the importance of the

transfer function we should use instead of its far-field approximation which

induces in this particular case a phase offset of 0.1◦ direcly connected to the

Hankel function approximation. A secondary phenomenon is also evident in

comparing the phases: the oscillation frequency is different between the two

17



(a) (b)

Figure 6: Error in the reconstructed two-dimensional wavefield -left panel

(a)- obtained by using the full asymptotic transfer function (25) and same

error -right panel (b)- using the far-field approximation of the asymptotic

transfer function (27).

cases. Where do these oscillations come from and why are these oscillations

different? The answer is not yet clear and we could infer that it comes from

wave interaction with heterogeneities of the medium, corresponding to the

two gradients in its particular case. More work is required for a proper

quantification of this error.

5. Conclusions

In this paper, we have derived the complete uniform asymptotic ex-

pansions that include the source singularity for the Helmholtz equation, in

two and three dimensions under the assumption of constant density. From

these expansions, we have constructed a transfer function that maps three-

dimensional data into two-dimensional data. The transfer function has been

18



Figure 7: Comparison of phase (upper panel) and modulus (lower panel)

of numerical, full and far-field asymptotic transfer functions with b =

−0.04 s2/m3.

analyzed against numerical solutions of the 2D and 3D Helmholtz equation

for a smooth vertically inhomogeneous medium, evaluated for a borehole

receiver geometry. We have shown that indeed one should consider the full

asymptotic transfer function while its far-field approximation might not be

enough especially nearby the source. Future work will extend the foregoing

results to more heterogeneous and anelastic media.
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