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Running head: Adding prior model into FWI

ABSTRACT

Full Waveform Inversion (FWI) delivers high-resolution qu antitative images and is a promis-
ing technique to obtain macro-scale physical properties mdel of the subsurface. In most
geophysical applications, prior information, as those cdected in wells, is available and

should be used to increase the image reliability. For this, v propose to introduce three



terms in the de nition of the FWI mist function: the data mis t itself, the rst-order
Tikhonov regularization term acting as a smoothing operata and a prior model norm term.
This last term is the way to introduce smoothly prior informa tion into the FWI work ow.
On a selected target of the Marmousi synthetic example, we sbw the signi cant improve-
ment obtained when using the prior model term for both noisefree and noisy synthetic data.
We illustrate that the prior model term may signi cantly red uce the inversion sensitivity to
incorrect initial conditions. It is highlighted how the lim ited range of spatial wavenumber
sampling by the acquisition may be compensated with the prio model information, for both
multiple-free and multiple-contaminated data. We also denonstrate that prior and initial
models play dierent roles in the inversion scheme. The stating model is used for wave
propagation and therefore drives the data-mis t gradient, while the prior model is never
used for solving the wave equation and only drives the optinZation step as an additional
constraint to minimize the total objective function. Thus t he prior model in not required
to follow kinematic properties as precisely as the initial model, except in poor illumination
zones. In addition, we investigate the in uence of a simple gnamic decreasing weighting
of the prior model term. Once the cycle-skipping problem hasbeen solved, the impact of
the prior model term is gradually reduced within the mist fu nction in order to be driven

by seismic-data only.



INTRODUCTION

Robust reservoir characterization is a key issue for oil andjas exploration and production.
The seismic processing work ow can be roughly summarized ithree main steps: velocity
model building, migration in time or in depth and elastic pro perties characterization through
amplitude variation-with-o set (AVO) or amplitude variat ion-with-angle (AVA) analysis.
The velocity model building remains a key step that can be takled with re ection/refraction
tomography in time and/or depth domain. A recent alternativ e for velocity model building is
the full waveform inversion (FWI) that allows to reconstruc t high-resolution velocity models
of the subsurface through the extraction of the full information content of the seismic data

(Tarantola, 1984; Virieux and Operto, 2009).

FWI is a multiscale data- tting method well adapted to wide- angle/wide-azimuth acqui-
sition geometries, as it uses simultaneously diving and reected waves. FWI is classically
solved with local optimization schemes and therefore strogly dependent on the starting
model de nition. This starting model should predict arriva | times with errors less than
half of the period to cancel the cycle-skipping ambiguity (Mirieux and Operto, 2009). The
multiscale strategy performed by moving from low to high frequencies during the inversion
allows to reduce the non-linearities and cycle-skipping isues of the inversion and helps con-
vergence towards the global minimum. Recent applications bFWI to real data have shown
promising results for exploration projects: see 3D examplkein Plessix and Perkins (2010) or
Sirgue et al. (2010). Monoparameter reconstruction of the aoustic velocity for exploration
is quite impressive even in the anisotropic case (Prieux etlg 2011). Elastic parameters
could also be recovered for exploration targets (Brossierteal., 2009; Prieux et al., 2012),

but elastic inversion applies rather to seismological scals where phases are nicely separated



(Fichtner et al., 2010; Tape et al., 2009).

Preconditioning or regularization techniques may allevide the non-uniqueness of the
ill-posed inverse problem. Tikhonov and Arsenin (1977) hae proposed a regularization
strategy, within the optimization step, to nd the smoothes t model that explains the data.
Preconditioning techniques acting as a smooth operator ontlie model update (Operto et al.,
2006) may add strong prior features of the expected structue through directive Laplacian
preconditioning, such as in (Guitton et al., 2010). Regulaization schemes that preserve
edges and contrasts have also been developed for speci ¢ FWdbplications through an “;
model penalty (Guitton, 2011) or through a multiplicative r egularization (Abubakar et al.,
2009) that mimics the Total Variation scheme (Rudin et al., 1992). Regularization can
also be expressed in the curvelet or wavelet domains (Loristel., 2010; Herrmann et al.,
2009). In such domains, the ;1 norm minimization is generally preferred for the model term

penalty as it ensures sparsity in the model space.

All the previous regularization techniques allow to stabilize the inversion scheme by
assuming a particular representation or structure of the véocity model (smoothness, spar-
sity and so on). However, prior model information is generdly not used in classical FWI
implementation even if Hu et al. (2009) recently suggested @ use a prior model in the
multiplicative regularization term. Several sources of pior model information are usually
available at the exploration stages, such as sonic logs, elgration well data or geological
information of the eld. One may want to use such prior information in the FWI scheme
as is done in other velocity building techniques. Taking inib account the prior informa-
tion could also be highly important for monitoring purposes, where many di erent and
precise prior data types have been collected for the targetane. Prior information can be

introduced through the generalized Tikhonov regularization using the Bayesian formula-
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tion (Greenhalgh et al., 2006; Mead and Renaut, 2009) wherehe prior model is related
to the expected model for the Bayesian interpretation. Strict Tikhonov regularization can
be recast into this formalism as well. However, combining gict Tikhonov regularization
and generalized Tikhonov regularizations may lead to di culties in de ning the respective
weights of the dierent information: prior information and expected smoothness of the

model.

Several studies have been done on using two model penalty tas in geophysical elec-
tromagnetic applications, such as for the inversion of magatic stripe data (Farquharson
and Oldenburg, 1998) and for the inversion of controlled sotce audio-frequency magne-
totellurics data to recover a 1D conductivity structure (Ro uth and Oldenburg, 1999). In
this study, we investigate the performances of a FWI scheme d&ised on two model penalty
terms in the mis t de nition in addition to the data term: the Tikhonov term to ensure
smoothness, and a prior model term to drive the inversion in agiven direction. In the rst
part, we present the theoretical framework of our study. Then, through a synthetic applica-
tion on the Marmousi model, we show the critical e ect of the prior model penalty term on
the FWI results. We shall highlight how the limited range of wavenumber sampling coming
from the limited frequency band and the acquisition geomety may be compensated with
the prior model information, for both surface multiple-free data and also data containing
surface multiples. We shall underline the fundamentally dierent role of the prior model

and of the starting model within the FWI procedure.

THEORY

Full Waveform Inversion relies on an iterative local optimization problem that is generally

introduced as a linearized least-squares problem. The optization attempts to minimize the
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residuals between the observed and the modeled wave elds dhe receivers. The linearized
inverse problem remains ill-posed, and therefore multiplemodel solutions can provide a
satisfactory t of the observed data. Prior information is generally introduced through
regularization in the inverse formalism. However, for specc applications where other
sources of information such as sonic logs, stratigraphic da or geological constraints are
available, it is crucial to take these into account in the inversion process and incorporate

them into a prior model, to ensure robust and consistent resilis.

To do so, we brie y introduce the full waveform inversion algorithm including the model

norm contribution.

The general de nition of the mis t function for solving ill- posed inverse problems could

be recast as the Tikhonov function (Tikhonov and Arsenin, 197):

Am) = G(m)+ Gy(m): 1)

The data mist Cy4(m) is based on a norm of the residuals between observed and conied
data in the data space, and the model normG;,(m) term is based on a norm of a model
penalty function in the model space. In the standard Tikhonos approach, this penalty
function is based on the rst spatial derivative of the current model that should have a
minimal norm, thus giving a smooth model. The hyper-parameer is the regularization
parameter, also called trade-o parameter, that balances ontributions between the data

and the model terms.

For applications where prior information on the model can beestablished, we add a
second penalty term to the mist function. This term estimat es residuals between the

current model at a given iteration and the prior model consicered at that same iteration.



The objective function can now be written as the following expression,
am) = G(m)+ 1G, (M) + G, (m); 2

where the Tikhonov term is denoted by G, (m) and the prior model mis tterm by G, (m).
Two regularization hyper-parameters ; and » are introduced, to allow weighting of the

penalty terms with respect to each other and to the data term.

Let us express these three terms in a more explicit way using, norms. The data term
may be written as

X L, XN Tt 0
G(m) = jjWqg(dops d(m))jj” = 5 (dobs d(m))" W Wg(dops d(m)) ; (3)

2
ns ns

where dgps and d(m) are vectors for the observed and computed data respectivel For
our speci c investigation we consider a time-domain approa&h, and each component of
these vectors are samples of time-domain seismograms reded at receiver positions for one
seismic source. This mis t function results from a sum over he ns sources of the experiment.
The matrix W 4 is a weighting operator on the data. This matrix can also be sen as the
inverse of the square-root of the covariance matrix of the d&, which contains information
on data uncertainties. Considering a constant measuremenguality and uncorrelated traces,
we end up with a diagonal matrix of W 4 = 4l , where 4 is the standard deviation of the
data and | is the identity matrix (Tarantola, 2005). The synthetic dat a d(m) non-linearly
depend on the model parameters denoted byn = fmjg,_; .y, whereNp is the number of
unknows. These model parameters should be determined thragi the inverse procedure by

reducing this data term.
The second term of the mis t function is the Tikhonov term and can be written as
G, (m) = jjBxymjj+ jjB,mjj“ = Efm By Bym+ m B, B,mg= Efm Dmg, (4)
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where By and B, are the rst-order spatial derivative operator matrices with respect to x
and z, respectively. In practice, they can be reduced to the secairorder Laplacian operator

D. We use a classical ve-point nite-di erence stencil to im plement the operator D.

The third term of the objective function is related to the pri or model mp, which can
be designed from di erent information and could be set prior to the seismic inversion, but
which could be also adapted iteratively during the inversian procedure. This so-called prior

model norm term is computed using the expression

n (0)

Con (M) = W (M MpiZ= 5 (M mp) WEWm (m mp) )

where the matrix W ,, is a weighting operator on the model space. This matrix can ao be
seen as the inverse of the square-root of the covariance matrof the model, and contains
prior uncertainty information of the prior model parameter s. In our implementation, since
we want to separate the in uence of the diagonal and o -diagaal terms of the covariance
matrix, we choose a diagonaW ,, matrix, diag(W =W ) =1= ?(m). The prior weighting

model ?(m) contains both the prior model uncertainty (variance) and the potential weight-
ing function, and will be discussed in the application secton. The covariances (o -diagonal

terms) are implicitely taken into account through the Tikho nov term.

Does the W ,, operator play a critical role in driving the inversion procedure towards
a given minimum? This is a question we want to investigate. Neée that the mist func-
tion, mixing both data and model quantities, is dimensionless due to the introduction
of the matrices W 4 and W ,, and through the hyper-parameter ; dimension. In order
to have three dimensionless terms in the sum, the hyper-pamaeter 1 has a dimension
[dim (h?)=dim?(m)], due to the dimensionality of the D operator, where the grid sizeh is

for a 2D square regular cartesian grid. For a model describebtly velocity, the dimension of



1 is second squaredrfi?=(m=s)? = s?).

Minimizing the mis t function classically leads to the norm al equation system which
can be written as

Hyn m= G n; (6)

where the gradient and the Hessian of the mis t function are denoted G,, and H,, respec-

tively. The gradient expression can be written with three canponents as

@(m) '

an W W g(dobs d(m))+ 1Dm + ;W IWp(m mp):  (7)

Gm:

The sensitivity matrix J = @l(m)=@n is composed by the Fechet derivatives of the syn-
thetic data with respect to the model parameters. The data-term gradient is e ciently
computed with an adjoint formulation (Plessix, 2006) without an explicit computation of
the matrix J. The two terms related to the model penalties are generally saightforward to
compute and are simply added to the data-term gradient contibution, leading to negligible

computer memory and CPU-time increase.

The Hessian matrix is based on the second derivative of the mit function and is not
computed in our implementation. Instead, we minimize our problem with a bounded quasi-
Newton method using the L-BFGS-B routine (Byrd et al., 1995). This routine allows to take
into account an approximate non-diagonal inverse Hessiarrém previous gradient and model
vectors, and performs a line-search satisfying Wolfe's cdatitions. This bounded limited-
memory quasi-Newton method is an e cient alternative to pre conditioned steepest-descent
or conjugate-gradient methods based only on gradients andir approximate diagonal Hes-
sian approaches. This cheap and e cient estimation of the inuence of the inverse Hessian
in the optimization improves focusing, partially corrects the descent direction from e ects

due to limited aperture illumination and frequency bandwidth and respects dimensionalities
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of the di erent parameter values (Brossier et al., 2009).

A major point for real data applications is the source-wavegt estimation. Our FWI is
implemented in the time-domain for both the forward and the inverse problem. The source-
wavelet estimation is however straightforwardly implemerted in the frequency-domain by
a linear inverse problem resolution. The computed and obseed time-domain data are
Fourier transformed to apply the Pratt (1999) (his equation 17) source estimation equation
for each frequency. The Fourier coe cients of the wavelet are then transformed back to
the time-domain and appropriately processed (anti-causaimute and/or band-pass Itering
if required) before performing FWI. This estimation is performed once before the optimiza-
tion. In the following tests applied to synthetics, we use the exact source wavelet for fair

comparisons, such that the results are not biased by potenél errors from this estimation.

APPLICATION TO MARMOUSI MODEL

In this section, we study the e ect of prior information in FW I. In particular, we show how
prior information allows to mitigate the lack of seismic illumination. A selected target zone
of the Marmousi Il P-wave velocity distribution (Martin et a I., 2006) and a homogeneous
density model are considered. The target exhibits two gas s& traps (Figure 1.a). We
consider a shallow-water con guration with a water depth of only 25 m. Our acquisition
geometry contains 54 isotropic pressure-sources, locatealong a horizontal line at 15 m
depth, every 50m. The layout is the same for all shots, one xed horizontal re@iver line at
15m depth and two xed vertical lines of receivers inside two exporation wells at x =50 m
and x = 2700 m with a 10 m interval between sensors. The deepest receivers inside the
wells are atz = 1265 m. The grid is regular, with the grid size equal to 5m, and it is

consistent for both modeling and inversion. We do not considr any sources within the
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wells as this design is unusual and quite expensive. Howeveve consider sensors inside
the wells, which could be installed for exploration or monitoring purposes, and allowing to
dramatically increase the illumination for velocity reconstruction. Note that our nal test
will be performed without these well sensors, to mimic a puresurface acquisition. A Ricker
wavelet source with a central frequency of 1Hz is used for all shots. The time seismograms
are generated using nite-di erence modeling in the time-domain with a fourth-order stencil
in space and a second-order integration in time. PerfectlyMatching-Layer (PML) absorbing
boundary conditions (Berenger, 1994) are used for non-re eting boundaries. The rst tests
are performed using a PML on top, in order to mimic multiple-free data. The last test will
consider a free-surface condition, modeling surface-mdufiles. The recorded pressure data
are used as observed data, both at the surface and in wells. gire 2.a shows an example

of a seismogram generated by a shot located at the center of éhsource line.

In our study, the data weighting matrix W g is chosen as identityW 4 = | [dim (data)] 1,
wheredim (data) means the unit of pressure data. In order to have a dimensidess objective
function, W 4 should have a dimension which is the inverse of the data dimesion. Note
that for all further applications, the Tikhonov regulariza tion parameter is kept xed to a
small value, imposing only a weak smoothing constraint, sioce we mainly focus on analyzing

of the e ects of the prior penalty term.

A smooth velocity model (Figure 1.b), which mimics a time-tomography velocity model
based on both rst arrivals and re ected events, and referred to henceforth as\smoothed
velocity maodel”, is used as the initial model for FWI. A time-domain FWI appro ach is used,
involving all the frequencies of the spectrum (maximum 30Hz in this case). No additional
hierarchical approach such as the frequency-continuatiorapproach of Bunks et al. (1995) is

used in these examples. This means that the weighting of eadnequency is directly link to
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its amplitude in the spectrum. A rst investigation (Figure 4.a) is performed with noise-free
data and a standard regularized FWI method, without consideing a prior model (equivalent
to 2 =0). The result shows that the optimization is trapped in a lo cal minimum. This
issue can be related to cycle-skipping ambiguities due to th starting model inaccuracy,
especially in the deepest part below 700m and on the left part of the model until the
second fault. Due to these inaccuracies, the target zones ogposed of the two reservoir

areas are not well recovered with this con guration.

FWI with prior model and impact of prior weighting matrix (W m)

In our framework where well information does exist, the FWI method should use this non-
seismic information as prior information for the inversion. We rst need to build the prior
velocity model m, and the model weighting matrix W r, that contains the prior model
uncertainty. In our study, we consider that the sonic-log measurements acquired in the two
exploration wells provide an accurate estimation of the loal vertical velocity. A prior model
could have been created from interpolation of the well veloity, following picked horizons
in the migrated section. Instead, we build a crude prior velaity model based on a linear
interpolation between the two well locations without any migration and picking approach.
This interpolated model (Figure 1.c) from only the well data, henceforth called\interpolated
velocity model", even though being far from the true 2D structure of the Marmousi model,
will be used as a prior velocity model for regularized invern. As shown in the following
test, this crude prior model allows to signi cantly help the inversion to converge, and when
applied to real data, the more accurate the prior is, for exanple if it is derived using standard

guantitative interpretation techniques, the better the FW | results will be.
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The prior model has to be associated to the weighting matrixW ,, in order to weight
the penalty associated to the model residual fh my). As already mentioned, we use
a diagonal weighting matrix containing both the uncertainty and some weighting. From
how the prior model is built, we know that, quantitatively, t he interpolated velocity values
should be accurate close to the well positions, but they can & erroneous far from the wells,
since the structure is highly heterogeneous. Therefore, welecided to build a weighting
shape whose uncertainty values follow a Gaussian function ith weak values near the wells
and increasing values in the center of the area (Figure 3.a).This is the prior weighting

model A.

A key point in all additive regularized optimization schemes is the selection of the
weighting hyper-parameters. As already mentioned, the ; value chosen is small enough
to ensure a slight smoothing of the results. In practice, to slect the , hyper-parameter,
we compute the mist function for the starting model for , = 1. Based on the ratio
between the prior-model mist G, (m) and the data-term mist CGy(m), we adjust the

» value such that 10 3 < < 10 2. Therefore, by selecting this reasonable ratio of prior-
model and data mis t terms, the FWI is prevented to minimize t he model norm heavily at
early iterations. In fact, an even stronger weight is applia to the data term in the global

objective function. In this test, we choose to have the ratio =10 2.

Figure 4.c shows the reconstructed velocity model after FW] starting from the \smoothed
velocity model", and using the \interpolated velocity model" as a prior model. We can see
that the shallow left part of the reconstructed model has bea strongly improved compared
to Figure 4.a. However, the deeper part of the result remainsstrongly dominated by the
footprint of the interpolated velocity model used as a prior model. This footprint can be

interpreted as an inappropriate relative weight between the prior penalty term and the data
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mis t term, for waves that illuminate this deeper part. The c onsistency of the two terms
at shallow depth, leads to an improved reconstruction. In oder to visually see the rela-
tive amplitude of the dierent terms of the gradient, the abs olute value of the data-term
gradient (Figure 5.a), the prior-model term gradient (Figure 5.b), and their ratio (prior-
model/data) (Figure 5.c) are computed at the rst iteration . With increasing depth, the
amplitude of the data-term gradient decreases, because thassociated wave amplitudes,
mainly in a re ection regime, decrease due to geometrical sgading, intrinsic attenuation
and energy partitioning at interfaces. The ratio between the prior-model and the data gra-
dients therefore shows that the deep part of the gradient is dven by the prior-model at the
expense of the data term, because of the homogeneous weigtgi term with depth in the
W ., matrix. To overcome this unfavorable balance between the di and the prior terms in
the optimization, a weighting is required and can be implemated in two di erent ways. We
can either modify the W ,, matrix to decrease the weight in depth or change the data-tem
weighting W 4 matrix such that the late arrivals have more weight in the data mist and
the data-gradient terms. This second weighting can be linkd to the metric choice of the

mis t function norm for the data term as de ned in Jin et al. (1 992).

In our study, we choose to involve the depth weighting in the nodel space and we use a
rough but e cient approximation of the geometrical spreadi ng to change theW ., matrix in
depth: we propose to make the operatoW ' W ,, decrease by a simple 2z with respect to
the depth z, in order to compensate for the propagating decay of the wavamplitude. This
kind of depth weighting has been used in the Controlled Soure Electromagnetic method
(Plessix and Mulder, 2008) and gravity inversion applications (Li and Oldenburg, 1998).
Plessix and Mulder (2008) have proposed the depth weightingnatrix to compensate the

exponential decay of the amplitude of electromagnetic wave and also geometrical spreading.
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This depth weighting was used as a preconditioning of the moel parameter (Plessix and
Mulder, 2008) and to counteract the geometric decay of the keels in inversion (Li and
Oldenburg, 1998). In our application, we use the same genefk@rinciple, but our main goal
is to make an appropriate balance between the prior-model non and data mis t in depth.
We combine this weighting and the uncertainty associated todistance away from the wells

to build a new weighting matrix (Figure 3.b), referred to as prior weighting model B.

FWI is now applied using the \smoothed velocity model" as the initial model and the
\interpolated velocity model" as the prior model together with the prior weighting model
B. The same hyper-parameter , is used, but note that the ratio value between prior-
model and data mis t is decreased to around 3 10 3. This weighting model B allows to
successfully balance the gradient energy with the depth ash®wn in Figure 5.d and 5.e.
The reconstructed velocity is shown in Figure 4.e and exhilis a signi cant improvement
compared to Figure 4.a. This result rst shows the importance of the prior weighting, which
should contain appropriate uncertainty information, but s hould also ensure an appropriate
balance between the prior mis t term and the data mis t term i n the optimization. In this
case, the prior term signi cantly helps the inversion to corverge to the global minimum
of the optimization problem, mitigating the cycle-skippin g issues that the data mist term
cannot handle alone. In fact, adding the prior model penaltyallows to change successive
descent directions and helps the inversion to converge to th correct global minimum valley
of the mis t function. This test shows that prior informatio n allows to constrain inversion

and, therefore, mitigates the non-uniqueness issue of iffosed inverse problems.
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Roles of initial versus prior models

In many geophysical inversions, it has been proven successfto choose the initial model
equal to the prior model (see Oldenburg (1994); Routh and Olénburg (1999) for electri-
cal/electromagnetic inversion and Routh and Anno (2008); Miler et al. (2008) for time-lapse
inversion), when it is chosen su ciently accurate. In this p art, we address the relative role
of the prior and initial models in the inversion procedure, when only partial information
is contained in the available models. A rst natural idea could be the use of the prior
velocity model (Figure 1.c) as the initial model of FWI. Since this model helps the FWI
when it is used as prior model, it could be a good candidate fothe initial model of the
inversion. Fundamental di erences exist when using a partcular velocity model as a prior
model which has no direct impacts on the modeling of synthett data or when using it as
an initial model with direct consequences on the synthetic @ta. Figure 6 illustrates the
inversion result derived using the classical regularized WI (same tuning as Figure 4.a) and
the \interpolated velocity model" as initial model. We can clearly see that the inversion
converges towards a local minimum, far from being a satisfdory result. Moreover, in this
case the optimization process stops after only a few iteratins. The shallow part on the
right-hand side of the model seems satisfactory but the lefhand side and the deeper parts
seem to be badly handled by this initial model, built from interpolation in this strongly
laterally-varying structure. One interpretation of this f ailure is related to the major di er-
ence in the meaning of the initial and of the prior model: the nitial model must be localized
in the attraction valley of the global minimum of the mis t fu nction, often related in seismic
as being kinematically accurate and not generating erroneas arrivals in the synthetic data
computed using the wave equation (see Figure 2.a and 2.c). tieed, it is much more di cult

for the inversion work ow to suppress or shift a structure than to create a new one. On the
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contrary, the prior model is never used as an input for solvirg the wave equation and is only
used to drive the optimization step in order to minimize the total objective function. It can
therefore contain any structure, complementary to the infamation contained in the initial
model, that can drive inversion towards expected zones of b model space. In our case,
the prior model allows FWI to be driven and partially lls int he lack of low wavenumbers
that cannot be extracted from only the data. Both the \smooth ed velocity model" and the
\interpolated velocity model" contain partial informatio n on the velocity model, that, when
used alone, is not su cient to converge towards the global mhimum. Only an appropriate
combination of both pieces of information, through the initial and prior models, allows to
exploit the partial information included in both, and allow s to signi cantly improve the
results. Note however that for regions of poor seismic illurination, as the optimization is
driven by the prior model, this model requires to be as accurte as possible (kinematically

correct) to ensure good results.

Dynamic prior regularization parameter

In complex environments, the prior model derived from extra information on the target
zone may be far away from the exact model we never reach. Evelf the prior model can
signi cantly improve results by driving the inversion in an appropriate direction, the nal

model can keep a signi cant footprint of the prior model structure and may prevent a
signi cant expression of the data itself. As shown in Figure4.e, the result exhibits ghost
interfaces coming from the interpolated prior model. Thesefootprints of the prior setting

do not honor the data itself. However, keeping a xed hyper-parameter on the prior term
of the mist function prevents the results from being improved since the prior model is

intrinsically wrong in such a case.
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Thus, one can investigate a dynamic weighting of the prior iformation, in order to
decrease the weight of the prior term ( 2) during iterations of the optimization. We suggest
a simple dynamic approach, considering a starting , value that is gradually decreasing
until it reaches zero. This method allows to drive FWI towards the global minimum valley
of the objective function at the beginning, due to the prior-model in uence, and to nally
leave only the data term to drive the nal iterations of the op timization, by gradually
decreasing the prior weight. The Tikhonov regularization term is kept constant as we only
discuss here the reciprocal in uences of the data mist termand of the prior term. Our
heuristic approach is based on the decrease of the objectifenction with iterations. When
the slope of the objective function curve becomes too smalland smaller than a specic
threshold, the current , value is divided by a factor of two to reinforce the weight of data
mis t term. Our criterion is based on the rst derivative of t he mis t function with respect
to iterations, computed with a simple nite-di erence sten cil. The derivative value at each
iteration is normalized by the rst derivative value. Durin g the optimization procedure, the
corresponding derivative value is compared to the xed threshold at each iteration. Every
time that the derivative is smaller than the threshold, meaning that the mist function
curve with iterations is becoming too at, the hyper-parameter , is changed. The key
issue of this strategy is the value of the threshold at which he hyper-parameter , term
must be decreased. We nd that a few trials can narrow down ths value quite rapidly from
variation of the mis t function. This threshold value shoul d be of the order of 104 10 3.
Note that in our implementation, the L-BFGS-B optimization is restarted each time the

hyper-parameter , is changed.

The dynamic method has a similar property to the multiplicat ive regularization and

cooling regularization approaches (van den Berg et al., 199 2003). In Total Variation
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(TV) as the multiplicative constraint, the data objective f unction itself is de ned as the
weight of TV. Therefore, the regularization term has a large weighting parameter in the
beginning of the optimization process, and gradually decrases as the objective function is

minimized and the data tted.

Figure 4.g shows the recovered model obtained by this dynaroi method, using the
\smoothed velocity model" as the starting model, the \inter polated velocity model" as a
prior model and the optimal weighting matrix B. As with the x ed » strategy, we can see
that the reconstructed model is dramatically improved when compared to the one obtained
by standard FWI. Moreover, the dynamic approach allows to miigate the footprint of the
prior model, since during the optimization the prior penalty weight decreases with respect
to the data mis t term. Thus, the e ect of the prior model is be ing reduced slowly and the
mis t data term helps inversion to converge to a quasi-perfet nal model. As a quality
control, vertical pro les taken through the two gas sand traps (for the initial, true and
recovered models) illustrate that the target velocity is recovered accurately (Figure 4.h),
compared to the result from standard FWI using the same initial model (Figure 4.b). In
addition, the computed seismogram inside the nal model shavs that the full seismic arrivals

have been exploited during the optimization (see Figure 2.3

The objective function curves for the data term, the model nams and the » curve as
a function of iteration are shown in Figure 7. In this case, the data are without noise and
a very small stopping criterion is selected to t the data as much as possible, leading to
a large number of iterations. This stopping criterion, base&l on the atness of the mist
function for two successive iterations, is the same for all he inversion tests, so that the
results are comparable. The data objective function alwaysdecreases and by reducing »,

we try to prevent giving a high weight to the prior penalty ter m. Therefore, by reducing
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the model objective function value, an appropriate contribution of the prior model is kept
during optimization. Note that there is no change on the smal ; value and that the

Tikhonov term always exists, leading to a non-zero model olgctive.

The convergence of standard FWI without any prior model and FWI with dynamic prior
weighting shows dramatic di erences of the evolution of thetotal objective function (Figure
8). The standard FWI gets trapped in a local minimum and stopsthe optimization after 87
iterations. By including the prior model to the optimizatio n, the path of descent is changed
and the optimization procedure is not trapped by local minimum attraction basins. The
beginning of the optimization appears quite equivalent forboth approaches until iteration
40, even showing better convergence speed for the standard/MA. After this step, due to
di erent descent paths, standard FWI slows down convergene speed and rapidly stops.
For FWI with dynamic prior weight (blue curve), we can observe a large decrease in the
objective function between iterations 170 and 230. Lookingt the updated model history at
these iterations shows a signi cant improvement, associad to the prior model penalty use,
in the shallow left part target, leading to a large decreasen the data mist. In standard
FWI, the data and Tikhonov terms of the mist gradient alone a re not able to solve this

problem in the shallow left part of model.

Noisy data

In presence of noise, the ill-posedness of the inverse prah is increased. Therefore, we
need to study the e ect of noise on our proposed regularized WI including the prior model
penalty. We keep the same acquisition con guration, while an arti cial Gaussian noise in

the range of 0 30Hz, the bandwidth of the source, is added to the true noise-freelata. The
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signal-to-noise ratio is around 7dB. Figure 9 illustrates an example of shot gathers used
for FWI (we have used the suaddnoise procedure of Seismic Uni(Cohen and Stockwell,

2008)).

Three inversion tests starting from the \smoothed velocity model" (Figure 1.b) are
performed. The rst one uses the standard FWI without the prior model (Figure 10.a).
The second test uses the \interpolated velocity model" as pior model with a xed
value (Figure 10.c), and the third one uses the dynamic priorweighting (Figure 10.e). All
the parameters are chosen identical to those of the noisede data set case, except the
hyper-parameter », which is now increased in order to account for the noise engy in
data. The », value is chosen such that the ratio between the prior-model pnalty and the
data mis t remains the same in the global mis t function, and equal to the noise-free case
( =3 10 ®). In presence of noise, the data mis t function has a larger walue than the

noise-free case, therefore a higher, value is required.

The results with noisy data remain consistent with the noisefree tests: the prior penalty
term still drives the inversion towards a more realistic andaccurate nal model, even though
more noisy. The dynamic approach also remains an appropri& strategy as can be shown
from the model reconstruction and from the two displayed vetical pro les (Figure 10.f).
This test for data with the presence of noise con rms the robistness of the approach for

non-perfect data.

Surface acquisition and multiple-contaminated data

In this section, we apply our scheme to a less favorable framea free surface condition is

used, meaning that surface multiples are now present in the ata. Moreover, we suppress the
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sensors located in the wells, leading to a pure surface aceiion. Note that the sensors in
the wells previously allowed to dramatically increase the llumination in this selected target
of Marmousi, where the ratio maximum o set/depth is about tw o, instead of three to four
as in classical FWI applications to exploit diving waves. In such a con guration with a
small o set compared to the depth, the FWI behaves generallylike a non-linear migration
technique, as the low part of the wavenumber domain can not beetrieved (Plessix and
Mulder, 2004) and we may question how the prior information may Il in this part of

wavenumber domain.

The observed data used in this test are shown in Figure 11. Theurface-related multiples

can clearly be seen compared to the previous data set.

Two inversion tests starting from the \smoothed velocity model" are performed. The
rst one uses the standard FWI without the prior model (Figur e 12.a). The second test uses
the \interpolated velocity model" as the prior model, the optimal prior weighting model
B, and the dynamic approach (Figure 12.c). Here, we assume #t the sonic logs are still

available and that we can use them for building the prior modé (like in previous tests).

All the parameters are chosen identical to those of the prewus tests. The starting »
value is adapted, due to a di erence in the data energy and tr&e number, to keep the same

=3 10 3 ratio between the prior-model and data mis t terms at the rs t iteration.

The result of standard FWI (Figure 12.a) contains many anomdies and ringing artifacts
in the shallow part. These e ects could be associated to sudce-related multiples coming
from the free surface. Even if the main structures are recowed in the shallow part, the
velocity model is strongly contaminated by artifacts at all depths leading to erroneous

velocity values at the two reservoir depths (see the QC logsn Figure 12.b). Moreover,
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due to the limited aperture coverage of the acquisition, thelow part of the wavenumber
spectrum is not recovered, and the structure seems depth sttched due to the initial model
inaccuracy. Adding the prior model and the dynamic weighting allows to signi cantly
improve the results (Figure 12.c), canceling the shallow mging e ects associated to the
surface-related multiples. In the shallow part of the targd where illumination remains
strong, the result is almost perfect. Deeper, because of théack of illumination, some
artifacts appear, but the prior model allows, at least partially, to Il in the low part of the

wavenumber spectrum that can not be retrieved from short-spead re ection only. This

leads to well-positioned structures, until at least 1 km deph (Figure 12.d).

DISCUSSION

So far, FWI has been considered essentially as a data-driveprocedure with negligible
contribution of prior model information and has therefore been investigated for seismic
exploration purposes. As the knowledge of the target zone isncreased, we may need to
introduce more model-driven features in the optimization procedure, especially when we

have poor illumination of the target zones.

The description of the mis t function with three terms shoul d increase potential per-
spectives of the FWI as we may relax the illumination constrants of this approach at the

expense of a better knowledge of expected features of the meldwe want to reconstruct.

The design of the hyper-parameters and, more speci cally, he dynamic evolution during
the inversion procedure, could be improved and robustnessheuld be analyzed. One can
say that this tuning is based on the mis t evolution for di er ent damping laws. From the

synthetic example we have studied, we have found that behawis of the FWI for di erent
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acquisition con gurations, namely the one with receivers d& the surface and within two
wells, and the one with receivers only at the surface with thesurface-related multiples, are
quite similar and, therefore, the tuning of hyper-parametas should not be highly sensitive

to the application.

In addition, deep targets could bene t as well from the prior information once the over-
burden structure has been de ned. In seismic exploration, gb-basalt and subsalt imaging is
quite challenging and any extra piece of information could kelp to improve the illumination
of the target. The introduction of prior information would a llow to help recover poorly

illuminated zones, thus broadening the application of the fill waveform inversion.

CONCLUSIONS

We have proposed a regularized FWI scheme that includes prianformation as an optimiza-
tion penalty term. Aside from the data mis t term, our mistd e nition is composed of two
penalty terms: the Tikhonov term to ensure smoothness and tle prior model term to help
the convergence towards expected models. Generally, thigtter prior penalty term is not
used in classical FWI implementation, but we show that adding this information reduces the
non-uniqueness issue of the inverse problem that is a welldown di culty of the full wave-
form inversion. This prior information can be deduced from ron-seismic data, well-logging
and geological constraints that are generally available fospeci ¢ exploration applications
and for monitoring during production. We show with that this prior information improves
the well-posedness of the problem as compared to the stand&iFWI approaches, and allows
to partially mitigate potential kinematic inaccuracy of th e starting model as well as illu-
mination issues. The prior weighting operators and the priog model require an appropriate

design: one has to properly balance the prior model term andhe data term during the
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inversion. We have shown that well-balancing both pieces ofnformation is crucial during

the optimization process. The prior model de nition, may in clude structures that can help
drive the inversion towards the global minimum valley without being kinematically as ac-
curate as the initial model for wave propagation. Moreover,these structures may prevent
convergence in the nal steps of the inversion and one can wisto decrease the importance
of this prior information with respect to the data informati on. We have proposed a dynamic
weighting of the prior term during the inversion in order to smoothly reduce the impact of
the prior information, leaving the oor at the end only to the data itself (regardless of the

smooth Tikhonov term).

During this investigation, we have shown the striking di er ences between the roles of
the initial model and the prior model in this constrained FWI framework where generally
only partial information is available: the initial model mu st respect the wave equation and
the related kinematic features to be positioned in the glob& minimum valley of the mis t
function; while the prior model does not have such obligatims restrictively like the initial
model. The construction of the initial model is quite delicate while the construction of the

prior model could allow more freedom.

Future investigations will be focused on using prior model ér time-lapse applications,
in order to accurately obtain the physical parameter variations in a target zone. The design
of the prior model, for more complex environments and real d&a applications, should also
consider geostatistical approaches and/or standard quaritative interpretation techniques

to honor the geological structures.
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FIGURE CAPTIONS

31



Figure 1: (a) The true V, velocity model which is a small part of the Marmousi model and
the acquisition geometry; (b) initial model for inversion which is a smooth model of the
true model; (c) the prior model created by linear distance wéghted interpolation in the x

direction between the exact values inside two exploration wlls and then gently smoothed.

Figure 2: Seismograms of pressure data for the source locat@lmost at the center of the
Marmousi model x =1:4 km: (a) recorded inside the true model, (b) calculated inside
the smooth initial model, (c) calculated inside the interpolated velocity model, and (d)

computed inside the nal model obtained through our dynamic approach.

Figure 3: Two types of prior weighting model used for regulaized inversion: (a) model A,
the Gaussian function varying only in the x direction between two wells with maximum
value at the center of model, and (b) model B, the same variatn in x complemented by a
guadratic evolution in the z direction (the Gaussian lateral variation could be seen nowin

the undulation of the white interface).

32



Figure 4: The recoveredV, models by FWI and two QC vertical logs passing through the
two target areas at x = 0:65 km and x = 2:3 km, (a) reconstructed model starting from
the smooth initial model and without a prior model, small ; and > = 0; (b) two vertical

logs corresponding to the model (a); (c) reconstructed modestarting from the smooth
initial model and with the prior model, small 1, xed », the prior weighting model A and
the ratio between prior-model and data mist terms =1 10 2; (d) two vertical logs
corresponding to the model (c); (e) reconstructed model stding from the smooth initial

model and with the prior model, small 1, xed » same as case (c), therior weighting
model B. Note the ratio is now decreased to 3 10 3; (f) two vertical logs corresponding
to the model (e); (g) reconstructed model starting from the snooth initial model and with

the prior model, small 4, initial value of =3 10 3, the prior weighting model B and
using the dynamic prior approach. The prior model is removed from the inversion at the

end of the procedure; (h) two vertical logs corresponding tathe model (Q).

Figure 5: At rstiteration of optimization, the absolute va lue of (a) the data-term gradient,
(b) the prior-model term gradient , (c) the ratio between pri or-model and data gradients,
in case of using the prior weighting model A; (d) and (e) same & (b) and (c) respectively,

but in case of using the prior weighting model B.

Figure 6: The recoveredV, model by standard FWI starting from an initial model equal to

the interpolated velocity model, small ; and , =0.
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Figure 7. Evolution of (a) the data objective function, (b) t he model objective function,
and (c) » value with iterations in case of using the dynamic approach.Note that (a) and

(b) curves are shown in logarithmic scale.

Figure 8: Comparison of the total objective function curvesin case of using the standard
FWI and the dynamic prior weighting FWI (a) for all iteration s, (b) shown at early itera-

tions.

Figure 9: Noisy seismograms of pressure data for the sourcedated almost at the cen-
ter of the Marmousi model x = 1:4 km; random Gaussian noise added to the synthetic

seismograms in bandwidth of 0 30Hz and SNR =7 dB.
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Figure 10: The recoveredV, models by FWI of the noisy data and two QC vertical logs
passing through the two target areas atx = 0:65 km and x = 2:3 km, (a) reconstructed
model starting from the smooth initial model and without a prior model, small ; and
2> = 0; (b) two vertical logs corresponding to the model (a); (c) reconstructed model
starting from the smooth initial model and with the prior mod el, small ;, xed adapted
> to have the ratio =3 10 3 at rst iteration, and the prior weighting model B; (d)
two vertical logs corresponding to the model (c); (e) reconsucted model starting from
the smooth initial model and with the prior model, small 1, same initial , before it is
decreased to zero (or same initial ratio =3 10 3), the prior weighting model B and
using the dynamic approach. The prior model is removed from le inversion at the end of

the procedure; (f) two vertical logs corresponding to the malel (e).

Figure 11: Seismograms of pressure data for the source loeat almost at the center of the
Marmousi model x = 1:4 km, recorded inside the true model with free surface condition

and using the receivers only at the surface.
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Figure 12: The recoveredV, models by FWI and two QC vertical logs passing through the
two target areas atx = 0:65km and x = 2:3 km, in case offree surface condition and using
only the receivers at the surface(a) reconstructed model starting from the smooth initial
model and without a prior model, small 1 and , =0; (b) two vertical logs corresponding
to the model (a); (c) reconstructed model starting from the snooth initial model and with
interpolated velocity model (Figure 1.c) as a prior model, snall 4, initial » value chosen
to have the ratio =3 10 2 at rst iteration, the prior weighting model B and using the

dynamic approach; (d) two vertical logs corresponding to the model (c).
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