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Running head: Adding prior model into FWI

ABSTRACT

Full Waveform Inversion (FWI) delivers high-resolution qu antitative images and is a promis-

ing technique to obtain macro-scale physical properties model of the subsurface. In most

geophysical applications, prior information, as those collected in wells, is available and

should be used to increase the image reliability. For this, we propose to introduce three
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terms in the de�nition of the FWI mis�t function: the data mis �t itself, the �rst-order

Tikhonov regularization term acting as a smoothing operator and a prior model norm term.

This last term is the way to introduce smoothly prior informa tion into the FWI workow.

On a selected target of the Marmousi synthetic example, we show the signi�cant improve-

ment obtained when using the prior model term for both noise-free and noisy synthetic data.

We illustrate that the prior model term may signi�cantly red uce the inversion sensitivity to

incorrect initial conditions. It is highlighted how the lim ited range of spatial wavenumber

sampling by the acquisition may be compensated with the prior model information, for both

multiple-free and multiple-contaminated data. We also demonstrate that prior and initial

models play di�erent roles in the inversion scheme. The starting model is used for wave

propagation and therefore drives the data-mis�t gradient, while the prior model is never

used for solving the wave equation and only drives the optimization step as an additional

constraint to minimize the total objective function. Thus t he prior model in not required

to follow kinematic properties as precisely as the initial model, except in poor illumination

zones. In addition, we investigate the inuence of a simple dynamic decreasing weighting

of the prior model term. Once the cycle-skipping problem hasbeen solved, the impact of

the prior model term is gradually reduced within the mis�t fu nction in order to be driven

by seismic-data only.
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INTRODUCTION

Robust reservoir characterization is a key issue for oil andgas exploration and production.

The seismic processing workow can be roughly summarized inthree main steps: velocity

model building, migration in time or in depth and elastic properties characterization through

amplitude variation-with-o�set (AVO) or amplitude variat ion-with-angle (AVA) analysis.

The velocity model building remains a key step that can be tackled with reection/refraction

tomography in time and/or depth domain. A recent alternativ e for velocity model building is

the full waveform inversion (FWI) that allows to reconstruc t high-resolution velocity models

of the subsurface through the extraction of the full information content of the seismic data

(Tarantola, 1984; Virieux and Operto, 2009).

FWI is a multiscale data-�tting method well adapted to wide- angle/wide-azimuth acqui-

sition geometries, as it uses simultaneously diving and reected waves. FWI is classically

solved with local optimization schemes and therefore strongly dependent on the starting

model de�nition. This starting model should predict arriva l times with errors less than

half of the period to cancel the cycle-skipping ambiguity (Virieux and Operto, 2009). The

multiscale strategy performed by moving from low to high frequencies during the inversion

allows to reduce the non-linearities and cycle-skipping issues of the inversion and helps con-

vergence towards the global minimum. Recent applications of FWI to real data have shown

promising results for exploration projects: see 3D examples in Plessix and Perkins (2010) or

Sirgue et al. (2010). Monoparameter reconstruction of the acoustic velocity for exploration

is quite impressive even in the anisotropic case (Prieux et al., 2011). Elastic parameters

could also be recovered for exploration targets (Brossier et al., 2009; Prieux et al., 2012),

but elastic inversion applies rather to seismological scales where phases are nicely separated
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(Fichtner et al., 2010; Tape et al., 2009).

Preconditioning or regularization techniques may alleviate the non-uniqueness of the

ill-posed inverse problem. Tikhonov and Arsenin (1977) have proposed a regularization

strategy, within the optimization step, to �nd the smoothes t model that explains the data.

Preconditioning techniques acting as a smooth operator on the model update (Operto et al.,

2006) may add strong prior features of the expected structure through directive Laplacian

preconditioning, such as in (Guitton et al., 2010). Regularization schemes that preserve

edges and contrasts have also been developed for speci�c FWIapplications through an `1

model penalty (Guitton, 2011) or through a multiplicative r egularization (Abubakar et al.,

2009) that mimics the Total Variation scheme (Rudin et al., 1992). Regularization can

also be expressed in the curvelet or wavelet domains (Loris et al., 2010; Herrmann et al.,

2009). In such domains, thè 1 norm minimization is generally preferred for the model term

penalty as it ensures sparsity in the model space.

All the previous regularization techniques allow to stabilize the inversion scheme by

assuming a particular representation or structure of the velocity model (smoothness, spar-

sity and so on). However, prior model information is generally not used in classical FWI

implementation even if Hu et al. (2009) recently suggested to use a prior model in the

multiplicative regularization term. Several sources of prior model information are usually

available at the exploration stages, such as sonic logs, exploration well data or geological

information of the �eld. One may want to use such prior inform ation in the FWI scheme

as is done in other velocity building techniques. Taking into account the prior informa-

tion could also be highly important for monitoring purposes, where many di�erent and

precise prior data types have been collected for the target zone. Prior information can be

introduced through the generalized Tikhonov regularization using the Bayesian formula-
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tion (Greenhalgh et al., 2006; Mead and Renaut, 2009) where the prior model is related

to the expected model for the Bayesian interpretation. Strict Tikhonov regularization can

be recast into this formalism as well. However, combining strict Tikhonov regularization

and generalized Tikhonov regularizations may lead to di�cu lties in de�ning the respective

weights of the di�erent information: prior information and expected smoothness of the

model.

Several studies have been done on using two model penalty terms in geophysical elec-

tromagnetic applications, such as for the inversion of magnetic stripe data (Farquharson

and Oldenburg, 1998) and for the inversion of controlled source audio-frequency magne-

totellurics data to recover a 1D conductivity structure (Ro uth and Oldenburg, 1999). In

this study, we investigate the performances of a FWI scheme based on two model penalty

terms in the mis�t de�nition in addition to the data term: the Tikhonov term to ensure

smoothness, and a prior model term to drive the inversion in agiven direction. In the �rst

part, we present the theoretical framework of our study. Then, through a synthetic applica-

tion on the Marmousi model, we show the critical e�ect of the prior model penalty term on

the FWI results. We shall highlight how the limited range of wavenumber sampling coming

from the limited frequency band and the acquisition geometry may be compensated with

the prior model information, for both surface multiple-free data and also data containing

surface multiples. We shall underline the fundamentally di�erent role of the prior model

and of the starting model within the FWI procedure.

THEORY

Full Waveform Inversion relies on an iterative local optimization problem that is generally

introduced as a linearized least-squares problem. The optimization attempts to minimize the
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residuals between the observed and the modeled wave�elds atthe receivers. The linearized

inverse problem remains ill-posed, and therefore multiplemodel solutions can provide a

satisfactory �t of the observed data. Prior information is g enerally introduced through

regularization in the inverse formalism. However, for speci�c applications where other

sources of information such as sonic logs, stratigraphic data or geological constraints are

available, it is crucial to take these into account in the inversion process and incorporate

them into a prior model, to ensure robust and consistent results.

To do so, we briey introduce the full waveform inversion algorithm including the model

norm contribution.

The general de�nition of the mis�t function for solving ill- posed inverse problems could

be recast as the Tikhonov function (Tikhonov and Arsenin, 1977):

C(m) = Cd(m) + � Cm (m): (1)

The data mis�t Cd(m) is based on a norm of the residuals between observed and computed

data in the data space, and the model normCm (m) term is based on a norm of a model

penalty function in the model space. In the standard Tikhonov approach, this penalty

function is based on the �rst spatial derivative of the current model that should have a

minimal norm, thus giving a smooth model. The hyper-parameter � is the regularization

parameter, also called trade-o� parameter, that balances contributions between the data

and the model terms.

For applications where prior information on the model can beestablished, we add a

second penalty term to the mis�t function. This term estimat es residuals between the

current model at a given iteration and the prior model considered at that same iteration.
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The objective function can now be written as the following expression,

C(m) = Cd(m) + � 1C1m (m) + � 2C2m (m); (2)

where the Tikhonov term is denoted byC1m (m) and the prior model mis�t term by C2m (m).

Two regularization hyper-parameters � 1 and � 2 are introduced, to allow weighting of the

penalty terms with respect to each other and to the data term.

Let us express these three terms in a more explicit way using̀2 norms. The data term

may be written as

Cd(m) =
X

ns

jjW d (dobs � d(m)) jj2 =
X

ns

1
2

n
(dobs � d(m))T W T

d W d (dobs � d(m))
o

; (3)

where dobs and d(m) are vectors for the observed and computed data respectively. For

our speci�c investigation we consider a time-domain approach, and each component of

these vectors are samples of time-domain seismograms recorded at receiver positions for one

seismic source. This mis�t function results from a sum over thens sources of the experiment.

The matrix W d is a weighting operator on the data. This matrix can also be seen as the

inverse of the square-root of the covariance matrix of the data, which contains information

on data uncertainties. Considering a constant measurementquality and uncorrelated traces,

we end up with a diagonal matrix of W d = � dI , where � d is the standard deviation of the

data and I is the identity matrix (Tarantola, 2005). The synthetic dat a d(m) non-linearly

depend on the model parameters denoted bym = f mi gi =1 ;N m
, where Nm is the number of

unknows. These model parameters should be determined through the inverse procedure by

reducing this data term.

The second term of the mis�t function is the Tikhonov term and can be written as

C1m (m) = jjB x mjj2 + jjB zmjj2 =
1
2

f m T B x
T B xm + m T B z

T B zmg =
1
2

f m T Dm g; (4)
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where B x and B z are the �rst-order spatial derivative operator matrices wi th respect to x

and z, respectively. In practice, they can be reduced to the second-order Laplacian operator

D . We use a classical �ve-point �nite-di�erence stencil to im plement the operator D .

The third term of the objective function is related to the pri or model m p, which can

be designed from di�erent information and could be set prior to the seismic inversion, but

which could be also adapted iteratively during the inversion procedure. This so-called prior

model norm term is computed using the expression

C2m (m) = jjW m (m � m p)jj2 =
1
2

n
(m � m p)T W T

m W m (m � m p)
o

; (5)

where the matrix W m is a weighting operator on the model space. This matrix can also be

seen as the inverse of the square-root of the covariance matrix of the model, and contains

prior uncertainty information of the prior model parameter s. In our implementation, since

we want to separate the inuence of the diagonal and o�-diagonal terms of the covariance

matrix, we choose a diagonalW m matrix, diag(W T
m W m ) = 1 =� 2(m). The prior weighting

model � 2(m) contains both the prior model uncertainty (variance) and t he potential weight-

ing function, and will be discussed in the application section. The covariances (o�-diagonal

terms) are implicitely taken into account through the Tikho nov term.

Does the W m operator play a critical role in driving the inversion procedure towards

a given minimum? This is a question we want to investigate. Note that the mis�t func-

tion, mixing both data and model quantities, is dimensionless due to the introduction

of the matrices W d and W m , and through the hyper-parameter � 1 dimension. In order

to have three dimensionless terms in the sum, the hyper-parameter � 1 has a dimension

[dim(h2)=dim2(m)], due to the dimensionality of the D operator, where the grid sizeh is

for a 2D square regular cartesian grid. For a model describedby velocity, the dimension of
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� 1 is second squared (m2=(m=s)2 = s2).

Minimizing the mis�t function classically leads to the norm al equation system which

can be written as

H m � m = �G m ; (6)

where the gradient and the Hessian of the mis�t function are denoted Gm and H m respec-

tively. The gradient expression can be written with three components as

Gm = �
�

@d(m)
@m

� T

W T
d W d (dobs � d(m)) + � 1Dm + � 2W T

mW m (m � m p): (7)

The sensitivity matrix J = @d(m)=@m is composed by the Fr�echet derivatives of the syn-

thetic data with respect to the model parameters. The data-term gradient is e�ciently

computed with an adjoint formulation (Plessix, 2006) without an explicit computation of

the matrix J. The two terms related to the model penalties are generally straightforward to

compute and are simply added to the data-term gradient contribution, leading to negligible

computer memory and CPU-time increase.

The Hessian matrix is based on the second derivative of the mis�t function and is not

computed in our implementation. Instead, we minimize our problem with a bounded quasi-

Newton method using the L-BFGS-B routine (Byrd et al., 1995). This routine allows to take

into account an approximate non-diagonal inverse Hessian from previous gradient and model

vectors, and performs a line-search satisfying Wolfe's conditions. This bounded limited-

memory quasi-Newton method is an e�cient alternative to pre conditioned steepest-descent

or conjugate-gradient methods based only on gradients and/or approximate diagonal Hes-

sian approaches. This cheap and e�cient estimation of the inuence of the inverse Hessian

in the optimization improves focusing, partially corrects the descent direction from e�ects

due to limited aperture illumination and frequency bandwidth and respects dimensionalities
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of the di�erent parameter values (Brossier et al., 2009).

A major point for real data applications is the source-wavelet estimation. Our FWI is

implemented in the time-domain for both the forward and the inverse problem. The source-

wavelet estimation is however straightforwardly implemented in the frequency-domain by

a linear inverse problem resolution. The computed and observed time-domain data are

Fourier transformed to apply the Pratt (1999) (his equation 17) source estimation equation

for each frequency. The Fourier coe�cients of the wavelet are then transformed back to

the time-domain and appropriately processed (anti-causalmute and/or band-pass �ltering

if required) before performing FWI. This estimation is performed once before the optimiza-

tion. In the following tests applied to synthetics, we use the exact source wavelet for fair

comparisons, such that the results are not biased by potential errors from this estimation.

APPLICATION TO MARMOUSI MODEL

In this section, we study the e�ect of prior information in FW I. In particular, we show how

prior information allows to mitigate the lack of seismic ill umination. A selected target zone

of the Marmousi II P-wave velocity distribution (Martin et a l., 2006) and a homogeneous

density model are considered. The target exhibits two gas sand traps (Figure 1.a). We

consider a shallow-water con�guration with a water depth of only 25 m. Our acquisition

geometry contains 54 isotropic pressure-sources, locatedalong a horizontal line at 15 m

depth, every 50m. The layout is the same for all shots, one �xed horizontal receiver line at

15 m depth and two �xed vertical lines of receivers inside two exploration wells at x = 50 m

and x = 2700 m with a 10 m interval between sensors. The deepest receivers inside the

wells are at z = 1265 m. The grid is regular, with the grid size equal to 5 m, and it is

consistent for both modeling and inversion. We do not consider any sources within the
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wells as this design is unusual and quite expensive. Howeverwe consider sensors inside

the wells, which could be installed for exploration or monitoring purposes, and allowing to

dramatically increase the illumination for velocity reconstruction. Note that our �nal test

will be performed without these well sensors, to mimic a puresurface acquisition. A Ricker

wavelet source with a central frequency of 10Hz is used for all shots. The time seismograms

are generated using �nite-di�erence modeling in the time-domain with a fourth-order stencil

in space and a second-order integration in time. Perfectly-Matching-Layer (PML) absorbing

boundary conditions (Berenger, 1994) are used for non-reecting boundaries. The �rst tests

are performed using a PML on top, in order to mimic multiple-free data. The last test will

consider a free-surface condition, modeling surface-multiples. The recorded pressure data

are used as observed data, both at the surface and in wells. Figure 2.a shows an example

of a seismogram generated by a shot located at the center of the source line.

In our study, the data weighting matrix W d is chosen as identityW d = I [dim(data)]� 1,

wheredim(data) means the unit of pressure data. In order to have a dimensionless objective

function, W d should have a dimension which is the inverse of the data dimension. Note

that for all further applications, the Tikhonov regulariza tion parameter is kept �xed to a

small value, imposing only a weak smoothing constraint, since we mainly focus on analyzing

of the e�ects of the prior penalty term.

A smooth velocity model (Figure 1.b), which mimics a time-tomography velocity model

based on both �rst arrivals and reected events, and referred to henceforth as \smoothed

velocity model", is used as the initial model for FWI. A time-domain FWI appro ach is used,

involving all the frequencies of the spectrum (maximum 30Hz in this case). No additional

hierarchical approach such as the frequency-continuationapproach of Bunks et al. (1995) is

used in these examples. This means that the weighting of eachfrequency is directly link to
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its amplitude in the spectrum. A �rst investigation (Figure 4.a) is performed with noise-free

data and a standard regularized FWI method, without considering a prior model (equivalent

to � 2 = 0). The result shows that the optimization is trapped in a lo cal minimum. This

issue can be related to cycle-skipping ambiguities due to the starting model inaccuracy,

especially in the deepest part below 700m and on the left part of the model until the

second fault. Due to these inaccuracies, the target zones composed of the two reservoir

areas are not well recovered with this con�guration.

FWI with prior model and impact of prior weighting matrix (W m )

In our framework where well information does exist, the FWI method should use this non-

seismic information as prior information for the inversion. We �rst need to build the prior

velocity model m p and the model weighting matrix W m that contains the prior model

uncertainty. In our study, we consider that the sonic-log measurements acquired in the two

exploration wells provide an accurate estimation of the local vertical velocity. A prior model

could have been created from interpolation of the well velocity, following picked horizons

in the migrated section. Instead, we build a crude prior velocity model based on a linear

interpolation between the two well locations without any migration and picking approach.

This interpolated model (Figure 1.c) from only the well data, henceforth called\interpolated

velocity model", even though being far from the true 2D structure of the Marmousi model,

will be used as a prior velocity model for regularized inversion. As shown in the following

test, this crude prior model allows to signi�cantly help the inversion to converge, and when

applied to real data, the more accurate the prior is, for example if it is derived using standard

quantitative interpretation techniques, the better the FW I results will be.
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The prior model has to be associated to the weighting matrixW m , in order to weight

the penalty associated to the model residual (m � m p). As already mentioned, we use

a diagonal weighting matrix containing both the uncertaint y and some weighting. From

how the prior model is built, we know that, quantitatively, t he interpolated velocity values

should be accurate close to the well positions, but they can be erroneous far from the wells,

since the structure is highly heterogeneous. Therefore, wedecided to build a weighting

shape whose uncertainty values follow a Gaussian function with weak values near the wells

and increasing values in the center of the area (Figure 3.a).This is the prior weighting

model A.

A key point in all additive regularized optimization schemes is the selection of the

weighting hyper-parameters. As already mentioned, the� 1 value chosen is small enough

to ensure a slight smoothing of the results. In practice, to select the � 2 hyper-parameter,

we compute the mis�t function for the starting model for � 2 = 1. Based on the ratio 

between the prior-model mis�t � 2C2m (m) and the data-term mis�t Cd(m), we adjust the

� 2 value such that 10� 3 <  < 10� 2. Therefore, by selecting this reasonable ratio of prior-

model and data mis�t terms, the FWI is prevented to minimize t he model norm heavily at

early iterations. In fact, an even stronger weight is applied to the data term in the global

objective function. In this test, we choose to have the ratio = 10 � 2.

Figure 4.c shows the reconstructed velocity model after FWI, starting from the \smoothed

velocity model", and using the \interpolated velocity model" as a prior model. We can see

that the shallow left part of the reconstructed model has been strongly improved compared

to Figure 4.a. However, the deeper part of the result remainsstrongly dominated by the

footprint of the interpolated velocity model used as a prior model. This footprint can be

interpreted as an inappropriate relative weight between the prior penalty term and the data
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mis�t term, for waves that illuminate this deeper part. The c onsistency of the two terms

at shallow depth, leads to an improved reconstruction. In order to visually see the rela-

tive amplitude of the di�erent terms of the gradient, the abs olute value of the data-term

gradient (Figure 5.a), the prior-model term gradient (Figu re 5.b), and their ratio (prior-

model/data) (Figure 5.c) are computed at the �rst iteration . With increasing depth, the

amplitude of the data-term gradient decreases, because theassociated wave amplitudes,

mainly in a reection regime, decrease due to geometrical spreading, intrinsic attenuation

and energy partitioning at interfaces. The ratio between the prior-model and the data gra-

dients therefore shows that the deep part of the gradient is driven by the prior-model at the

expense of the data term, because of the homogeneous weighting term with depth in the

W m matrix. To overcome this unfavorable balance between the data and the prior terms in

the optimization, a weighting is required and can be implemented in two di�erent ways. We

can either modify the W m matrix to decrease the weight in depth or change the data-term

weighting W d matrix such that the late arrivals have more weight in the data mis�t and

the data-gradient terms. This second weighting can be linked to the metric choice of the

mis�t function norm for the data term as de�ned in Jin et al. (1 992).

In our study, we choose to involve the depth weighting in the model space and we use a

rough but e�cient approximation of the geometrical spreadi ng to change theW m matrix in

depth: we propose to make the operatorW T
mW m decrease by a simple 1=z2 with respect to

the depth z, in order to compensate for the propagating decay of the waveamplitude. This

kind of depth weighting has been used in the Controlled Source Electromagnetic method

(Plessix and Mulder, 2008) and gravity inversion applications (Li and Oldenburg, 1998).

Plessix and Mulder (2008) have proposed the depth weightingmatrix to compensate the

exponential decay of the amplitude of electromagnetic waves and also geometrical spreading.
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This depth weighting was used as a preconditioning of the model parameter (Plessix and

Mulder, 2008) and to counteract the geometric decay of the kernels in inversion (Li and

Oldenburg, 1998). In our application, we use the same general principle, but our main goal

is to make an appropriate balance between the prior-model norm and data mis�t in depth.

We combine this weighting and the uncertainty associated todistance away from the wells

to build a new weighting matrix (Figure 3.b), referred to as prior weighting model B.

FWI is now applied using the \smoothed velocity model" as the initial model and the

\interpolated velocity model" as the prior model together w ith the prior weighting model

B. The same hyper-parameter� 2 is used, but note that the  ratio value between prior-

model and data mis�t is decreased to around 3� 10� 3. This weighting model B allows to

successfully balance the gradient energy with the depth as shown in Figure 5.d and 5.e.

The reconstructed velocity is shown in Figure 4.e and exhibits a signi�cant improvement

compared to Figure 4.a. This result �rst shows the importance of the prior weighting, which

should contain appropriate uncertainty information, but s hould also ensure an appropriate

balance between the prior mis�t term and the data mis�t term i n the optimization. In this

case, the prior term signi�cantly helps the inversion to converge to the global minimum

of the optimization problem, mitigating the cycle-skippin g issues that the data mis�t term

cannot handle alone. In fact, adding the prior model penaltyallows to change successive

descent directions and helps the inversion to converge to the correct global minimum valley

of the mis�t function. This test shows that prior informatio n allows to constrain inversion

and, therefore, mitigates the non-uniqueness issue of ill-posed inverse problems.
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Roles of initial versus prior models

In many geophysical inversions, it has been proven successful to choose the initial model

equal to the prior model (see Oldenburg (1994); Routh and Oldenburg (1999) for electri-

cal/electromagnetic inversion and Routh and Anno (2008); Miller et al. (2008) for time-lapse

inversion), when it is chosen su�ciently accurate. In this p art, we address the relative role

of the prior and initial models in the inversion procedure, when only partial information

is contained in the available models. A �rst natural idea could be the use of the prior

velocity model (Figure 1.c) as the initial model of FWI. Since this model helps the FWI

when it is used as prior model, it could be a good candidate forthe initial model of the

inversion. Fundamental di�erences exist when using a particular velocity model as a prior

model which has no direct impacts on the modeling of synthetic data or when using it as

an initial model with direct consequences on the synthetic data. Figure 6 illustrates the

inversion result derived using the classical regularized FWI (same tuning as Figure 4.a) and

the \interpolated velocity model" as initial model. We can c learly see that the inversion

converges towards a local minimum, far from being a satisfactory result. Moreover, in this

case the optimization process stops after only a few iterations. The shallow part on the

right-hand side of the model seems satisfactory but the left-hand side and the deeper parts

seem to be badly handled by this initial model, built from int erpolation in this strongly

laterally-varying structure. One interpretation of this f ailure is related to the major di�er-

ence in the meaning of the initial and of the prior model: the initial model must be localized

in the attraction valley of the global minimum of the mis�t fu nction, often related in seismic

as being kinematically accurate and not generating erroneous arrivals in the synthetic data

computed using the wave equation (see Figure 2.a and 2.c). Indeed, it is much more di�cult

for the inversion workow to suppress or shift a structure than to create a new one. On the
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contrary, the prior model is never used as an input for solving the wave equation and is only

used to drive the optimization step in order to minimize the total objective function. It can

therefore contain any structure, complementary to the information contained in the initial

model, that can drive inversion towards expected zones of the model space. In our case,

the prior model allows FWI to be driven and partially �lls in t he lack of low wavenumbers

that cannot be extracted from only the data. Both the \smooth ed velocity model" and the

\interpolated velocity model" contain partial informatio n on the velocity model, that, when

used alone, is not su�cient to converge towards the global minimum. Only an appropriate

combination of both pieces of information, through the initial and prior models, allows to

exploit the partial information included in both, and allow s to signi�cantly improve the

results. Note however that for regions of poor seismic illumination, as the optimization is

driven by the prior model, this model requires to be as accurate as possible (kinematically

correct) to ensure good results.

Dynamic prior regularization parameter

In complex environments, the prior model derived from extra information on the target

zone may be far away from the exact model we never reach. Even if the prior model can

signi�cantly improve results by driving the inversion in an appropriate direction, the �nal

model can keep a signi�cant footprint of the prior model structure and may prevent a

signi�cant expression of the data itself. As shown in Figure 4.e, the result exhibits ghost

interfaces coming from the interpolated prior model. Thesefootprints of the prior setting

do not honor the data itself. However, keeping a �xed hyper-parameter on the prior term

of the mis�t function prevents the results from being improv ed since the prior model is

intrinsically wrong in such a case.
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Thus, one can investigate a dynamic weighting of the prior information, in order to

decrease the weight of the prior term (� 2) during iterations of the optimization. We suggest

a simple dynamic approach, considering a starting� 2 value that is gradually decreasing

until it reaches zero. This method allows to drive FWI towards the global minimum valley

of the objective function at the beginning, due to the prior-model inuence, and to �nally

leave only the data term to drive the �nal iterations of the op timization, by gradually

decreasing the prior weight. The Tikhonov regularization term is kept constant as we only

discuss here the reciprocal inuences of the data mis�t term and of the prior term. Our

heuristic approach is based on the decrease of the objectivefunction with iterations. When

the slope of the objective function curve becomes too small,and smaller than a speci�c

threshold, the current � 2 value is divided by a factor of two to reinforce the weight of data

mis�t term. Our criterion is based on the �rst derivative of t he mis�t function with respect

to iterations, computed with a simple �nite-di�erence sten cil. The derivative value at each

iteration is normalized by the �rst derivative value. Durin g the optimization procedure, the

corresponding derivative value is compared to the �xed threshold at each iteration. Every

time that the derivative is smaller than the threshold, meaning that the mis�t function

curve with iterations is becoming too at, the hyper-parameter � 2 is changed. The key

issue of this strategy is the value of the threshold at which the hyper-parameter � 2 term

must be decreased. We �nd that a few trials can narrow down this value quite rapidly from

variation of the mis�t function. This threshold value shoul d be of the order of 10� 4 � 10� 3.

Note that in our implementation, the L-BFGS-B optimization is restarted each time the

hyper-parameter � 2 is changed.

The dynamic method has a similar property to the multiplicat ive regularization and

cooling regularization approaches (van den Berg et al., 1999, 2003). In Total Variation
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(TV) as the multiplicative constraint, the data objective f unction itself is de�ned as the

weight of TV. Therefore, the regularization term has a large weighting parameter in the

beginning of the optimization process, and gradually decreases as the objective function is

minimized and the data �tted.

Figure 4.g shows the recovered model obtained by this dynamic method, using the

\smoothed velocity model" as the starting model, the \inter polated velocity model" as a

prior model and the optimal weighting matrix B. As with the �x ed � 2 strategy, we can see

that the reconstructed model is dramatically improved when compared to the one obtained

by standard FWI. Moreover, the dynamic approach allows to mitigate the footprint of the

prior model, since during the optimization the prior penalty weight decreases with respect

to the data mis�t term. Thus, the e�ect of the prior model is be ing reduced slowly and the

mis�t data term helps inversion to converge to a quasi-perfect �nal model. As a quality

control, vertical pro�les taken through the two gas sand traps (for the initial, true and

recovered models) illustrate that the target velocity is recovered accurately (Figure 4.h),

compared to the result from standard FWI using the same initial model (Figure 4.b). In

addition, the computed seismogram inside the �nal model shows that the full seismic arrivals

have been exploited during the optimization (see Figure 2.d).

The objective function curves for the data term, the model norms and the � 2 curve as

a function of iteration are shown in Figure 7. In this case, the data are without noise and

a very small stopping criterion is selected to �t the data as much as possible, leading to

a large number of iterations. This stopping criterion, based on the atness of the mis�t

function for two successive iterations, is the same for all the inversion tests, so that the

results are comparable. The data objective function alwaysdecreases and by reducing� 2,

we try to prevent giving a high weight to the prior penalty ter m. Therefore, by reducing
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the model objective function value, an appropriate contribution of the prior model is kept

during optimization. Note that there is no change on the small � 1 value and that the

Tikhonov term always exists, leading to a non-zero model objective.

The convergence of standard FWI without any prior model and FWI with dynamic prior

weighting shows dramatic di�erences of the evolution of thetotal objective function (Figure

8). The standard FWI gets trapped in a local minimum and stops the optimization after 87

iterations. By including the prior model to the optimizatio n, the path of descent is changed

and the optimization procedure is not trapped by local minimum attraction basins. The

beginning of the optimization appears quite equivalent forboth approaches until iteration

40, even showing better convergence speed for the standard FWI. After this step, due to

di�erent descent paths, standard FWI slows down convergence speed and rapidly stops.

For FWI with dynamic prior weight (blue curve), we can observe a large decrease in the

objective function between iterations 170 and 230. Lookingat the updated model history at

these iterations shows a signi�cant improvement, associated to the prior model penalty use,

in the shallow left part target, leading to a large decrease in the data mis�t. In standard

FWI, the data and Tikhonov terms of the mis�t gradient alone a re not able to solve this

problem in the shallow left part of model.

Noisy data

In presence of noise, the ill-posedness of the inverse problem is increased. Therefore, we

need to study the e�ect of noise on our proposed regularized FWI including the prior model

penalty. We keep the same acquisition con�guration, while an arti�cial Gaussian noise in

the range of 0� 30Hz, the bandwidth of the source, is added to the true noise-freedata. The
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signal-to-noise ratio is around 7dB. Figure 9 illustrates an example of shot gathers used

for FWI (we have used the suaddnoise procedure of Seismic Unix (Cohen and Stockwell,

2008)).

Three inversion tests starting from the \smoothed velocity model" (Figure 1.b) are

performed. The �rst one uses the standard FWI without the pri or model (Figure 10.a).

The second test uses the \interpolated velocity model" as prior model with a �xed � 2

value (Figure 10.c), and the third one uses the dynamic priorweighting (Figure 10.e). All

the parameters are chosen identical to those of the noise-free data set case, except the

hyper-parameter � 2, which is now increased in order to account for the noise energy in

data. The � 2 value is chosen such that the ratio between the prior-model penalty and the

data mis�t remains the same in the global mis�t function, and equal to the noise-free case

( = 3 � 10� 3). In presence of noise, the data mis�t function has a larger value than the

noise-free case, therefore a higher� 2 value is required.

The results with noisy data remain consistent with the noise-free tests: the prior penalty

term still drives the inversion towards a more realistic andaccurate �nal model, even though

more noisy. The dynamic approach also remains an appropriate strategy as can be shown

from the model reconstruction and from the two displayed vertical pro�les (Figure 10.f).

This test for data with the presence of noise con�rms the robustness of the approach for

non-perfect data.

Surface acquisition and multiple-contaminated data

In this section, we apply our scheme to a less favorable frame: a free surface condition is

used, meaning that surface multiples are now present in the data. Moreover, we suppress the
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sensors located in the wells, leading to a pure surface acquisition. Note that the sensors in

the wells previously allowed to dramatically increase the illumination in this selected target

of Marmousi, where the ratio maximum o�set/depth is about tw o, instead of three to four

as in classical FWI applications to exploit diving waves. In such a con�guration with a

small o�set compared to the depth, the FWI behaves generallylike a non-linear migration

technique, as the low part of the wavenumber domain can not beretrieved (Plessix and

Mulder, 2004) and we may question how the prior information may �ll in this part of

wavenumber domain.

The observed data used in this test are shown in Figure 11. Thesurface-related multiples

can clearly be seen compared to the previous data set.

Two inversion tests starting from the \smoothed velocity model" are performed. The

�rst one uses the standard FWI without the prior model (Figur e 12.a). The second test uses

the \interpolated velocity model" as the prior model, the op timal prior weighting model

B, and the dynamic approach (Figure 12.c). Here, we assume that the sonic logs are still

available and that we can use them for building the prior model (like in previous tests).

All the parameters are chosen identical to those of the previous tests. The starting � 2

value is adapted, due to a di�erence in the data energy and trace number, to keep the same

 = 3 � 10� 3 ratio between the prior-model and data mis�t terms at the �rs t iteration.

The result of standard FWI (Figure 12.a) contains many anomalies and ringing artifacts

in the shallow part. These e�ects could be associated to surface-related multiples coming

from the free surface. Even if the main structures are recovered in the shallow part, the

velocity model is strongly contaminated by artifacts at all depths leading to erroneous

velocity values at the two reservoir depths (see the QC logs in Figure 12.b). Moreover,
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due to the limited aperture coverage of the acquisition, thelow part of the wavenumber

spectrum is not recovered, and the structure seems depth stretched due to the initial model

inaccuracy. Adding the prior model and the dynamic weighting allows to signi�cantly

improve the results (Figure 12.c), canceling the shallow ringing e�ects associated to the

surface-related multiples. In the shallow part of the target where illumination remains

strong, the result is almost perfect. Deeper, because of thelack of illumination, some

artifacts appear, but the prior model allows, at least partially, to �ll in the low part of the

wavenumber spectrum that can not be retrieved from short-spread reection only. This

leads to well-positioned structures, until at least 1 km depth (Figure 12.d).

DISCUSSION

So far, FWI has been considered essentially as a data-drivenprocedure with negligible

contribution of prior model information and has therefore been investigated for seismic

exploration purposes. As the knowledge of the target zone isincreased, we may need to

introduce more model-driven features in the optimization procedure, especially when we

have poor illumination of the target zones.

The description of the mis�t function with three terms shoul d increase potential per-

spectives of the FWI as we may relax the illumination constraints of this approach at the

expense of a better knowledge of expected features of the model we want to reconstruct.

The design of the hyper-parameters and, more speci�cally, the dynamic evolution during

the inversion procedure, could be improved and robustness should be analyzed. One can

say that this tuning is based on the mis�t evolution for di�er ent damping laws. From the

synthetic example we have studied, we have found that behaviors of the FWI for di�erent
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acquisition con�gurations, namely the one with receivers at the surface and within two

wells, and the one with receivers only at the surface with thesurface-related multiples, are

quite similar and, therefore, the tuning of hyper-parameters should not be highly sensitive

to the application.

In addition, deep targets could bene�t as well from the prior information once the over-

burden structure has been de�ned. In seismic exploration, sub-basalt and subsalt imaging is

quite challenging and any extra piece of information could help to improve the illumination

of the target. The introduction of prior information would a llow to help recover poorly

illuminated zones, thus broadening the application of the full waveform inversion.

CONCLUSIONS

We have proposed a regularized FWI scheme that includes prior information as an optimiza-

tion penalty term. Aside from the data mis�t term, our mis�t d e�nition is composed of two

penalty terms: the Tikhonov term to ensure smoothness and the prior model term to help

the convergence towards expected models. Generally, this latter prior penalty term is not

used in classical FWI implementation, but we show that adding this information reduces the

non-uniqueness issue of the inverse problem that is a well-known di�culty of the full wave-

form inversion. This prior information can be deduced from non-seismic data, well-logging

and geological constraints that are generally available for speci�c exploration applications

and for monitoring during production. We show with that this prior information improves

the well-posedness of the problem as compared to the standard FWI approaches, and allows

to partially mitigate potential kinematic inaccuracy of th e starting model as well as illu-

mination issues. The prior weighting operators and the prior model require an appropriate

design: one has to properly balance the prior model term and the data term during the
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inversion. We have shown that well-balancing both pieces ofinformation is crucial during

the optimization process. The prior model de�nition, may in clude structures that can help

drive the inversion towards the global minimum valley without being kinematically as ac-

curate as the initial model for wave propagation. Moreover,these structures may prevent

convergence in the �nal steps of the inversion and one can wish to decrease the importance

of this prior information with respect to the data informati on. We have proposed a dynamic

weighting of the prior term during the inversion in order to smoothly reduce the impact of

the prior information, leaving the oor at the end only to the data itself (regardless of the

smooth Tikhonov term).

During this investigation, we have shown the striking di�er ences between the roles of

the initial model and the prior model in this constrained FWI framework where generally

only partial information is available: the initial model mu st respect the wave equation and

the related kinematic features to be positioned in the global minimum valley of the mis�t

function; while the prior model does not have such obligations restrictively like the initial

model. The construction of the initial model is quite delicate while the construction of the

prior model could allow more freedom.

Future investigations will be focused on using prior model for time-lapse applications,

in order to accurately obtain the physical parameter variations in a target zone. The design

of the prior model, for more complex environments and real data applications, should also

consider geostatistical approaches and/or standard quantitative interpretation techniques

to honor the geological structures.

25



ACKNOWLEDGEMENTS

We would like to thank TOTAL Exploration & Production and SEI SCOPE consortium

for supporting this study. This work was performed by accessto the high-performance

computing facilities of CIMENT (Universit�e de Grenoble) a nd to the HPC resources of

GENCI-CINES under Grant 2011-046091. We acknowledge both of these facilities and

the support of their sta�. We would like to gratefully thank t he Associate Editor, Aria

Abubakar, three anonymous reviewers and Partha Routh, for their very constructive com-

ments on the manuscript.

26



REFERENCES

Abubakar, A., W. Hu, T. M. Habashy, and P. M. van den Berg, 2009, Application of

the �nite-di�erence contrast-source inversion algorithm to seismic full-waveform data:

Geophysics,74, WCC47{WCC58.

Berenger, J.-P., 1994, A perfectly matched layer for absorption of electromagnetic waves:

Journal of Computational Physics, 114, 185{200.

Brossier, R., S. Operto, and J. Virieux, 2009, Seismic imaging of complex onshore struc-

tures by 2D elastic frequency-domain full-waveform inversion: Geophysics,74, WCC63{

WCC76.

Bunks, C., F. M. Salek, S. Zaleski, and G. Chavent, 1995, Multiscale seismic waveform

inversion: Geophysics,60, 1457{1473.

Byrd, R., P. Lu, and J. Nocedal, 1995, A limited memory algorithm for bound constrained

optimization: SIAM Journal on Scienti�c and Statistical Co mputing, 16, 1190{1208.

Cohen, J. K. and J. J. W. Stockwell, 2008, CWP/SU: Seismic Unix release No. 41: an open

source software package for seismic research and processing, Center for Wave Phenomena,

Colorado School of Mines.

Farquharson, C. G. and D. W. Oldenburg, 1998, Non-linear inversion using general measures

of data mis�t and model structure: Geophysical Journal International, 134, 213{227.

Fichtner, A., B. L. N. Kennett, H. Igel, and H. P. Bunge, 2010, Full waveform tomogra-

phy for radially anisotropic structure: New insights into p resent and past states of the

Australasian upper mantle: Earth and Planetary Science Lettters, 290, 270{280.

Greenhalgh, S., B. Zhou, and A. Green, 2006, Solutions, algorithms and inter-relations for

local minimization search geophysical inversion: Journalof Geophysics and Engineering,

3, 101{113.

27



Guitton, A., 2011, A blocky regularization scheme for full waveform inversion: SEG Tech-

nical Program Expanded Abstracts, 30, 2418{2422.

Guitton, A., G. Ayeni, and G. Gonzales, 2010, A preconditioning scheme for full waveform

inversion: SEG Technical Program Expanded Abstracts,29, 1008{1012.

Herrmann, F. J., Y. A. Erlangga, and T. T. Y. Lin, 2009, Compressive simultaneous full-

waveform simulation: Geophysics,74(4) , A35{A40.

Hu, W., A. Abubakar, and T. M. Habashy, 2009, Simultaneous multifrequency inversion of

full-waveform seismic data: Geophysics,74, R1{R14.

Jin, S., R. Madariaga, J. Virieux, and G. Lambar�e, 1992, Two-dimensional asymptotic

iterative elastic inversion: Geophysical Journal International, 108, 575{588.

Li, Y. and D. W. Oldenburg, 1998, 3-D inversion of gravity data: Geophysics,63, 109{119.

Loris, I., H. Douma, G. Nolet, I. Daubechies, and C. Regone, 2010, Nonlinear regularization

techniques for seismic tomography: Journal of Computational Physics, 229, 890{905.

Martin, G. S., R. Wiley, and K. J. Marfurt, 2006, Marmousi2: A n elastic upgrade for

marmousi: The Leading Edge,25, 156{166.

Mead, J. L. and R. A. Renaut, 2009, A Newton root-�nding algor ithm for estimating

the regularization parameter for solving ill-conditioned least squares problems: Inverse

Problems, 25, 025002.

Miller, C. R., P. S. Routh, T. R. Brosten, and J. P. McNamara, 2008, Application of

time-lapse ert imaging to watershed characterization: Geophysics, 73, G7{G17.

Oldenburg, D. W., 1994, Practical strategies for the solution of large-scale electromagnetic

inverse problems: Radio Science,29, 1081{1099.

Operto, S., J. Virieux, J. X. Dessa, and G. Pascal, 2006, Crustal imaging from mul-

tifold ocean bottom seismometers data by frequency-domainfull-waveform tomogra-

28



phy: application to the eastern Nankai trough: Journal of Geophysical Research,111,

doi:10.1029/2005JB003835.

Plessix, R. E., 2006, A review of the adjoint-state method for computing the gradient of a

functional with geophysical applications: Geophysical Journal International, 167, 495{

503.

Plessix, R. E. and W. A. Mulder, 2004, Frequency domain �nite di�erence amplitude pre-

serving migration: Geophysical Journal International, 157, 975{987.

||{, 2008, Resistivity imaging with controlled-source ele ctromagnetic data: depth and

data weighting: Inverse Problems,24, 034012.

Plessix, R. E. and C. Perkins, 2010, Full waveform inversionof a deep water ocean bottom

seismometer dataset: First Break,28, 71{78.

Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, part I : theory and

veri�cation in a physic scale model: Geophysics,64, 888{901.

Prieux, V., R. Brossier, Y. Gholami, S. Operto, J. Virieux, O . Barkved, and J. Kommedal,

2011, On the footprint of anisotropy on isotropic full waveform inversion: the Valhall

case study: Geophysical Journal International,187, 1495{1515.

Prieux, V., R. Brossier, S. Operto, and J. Virieux, 2012, Two-dimensional anisotropic visco-

elastic full waveform inversion of wide-aperture 4C OBC data from the Valhall �eld:

Presented at the 74th Annual EAGE Conference and Exhibition, EAGE.

Routh, P. S. and P. D. Anno, 2008, Time-lapse noise characterization by inversion: SEG

Technical Program Expanded Abstracts, 27, 3143{3147.

Routh, P. S. and D. W. Oldenburg, 1999, Inversion of controlled source audio-frequency

magnetotellurics data for a horizontally layered earth: Geophysics,64, 1689{1697.

Rudin, L., S. Osher, and E. Fatemi, 1992, Nonlinear total variation based noise removal

29



algorithms: Physica D, 60, 259{268.

Sirgue, L., O. I. Barkved, J. Dellinger, J. Etgen, U. Alberti n, and J. H. Kommedal, 2010,

Full waveform inversion: the next leap forward in imaging at Valhall: First Break, 28,

65{70.

Tape, C., Q. Liu, A. Maggi, and J. Tromp, 2009, Seismic tomography of the southern

california crust based on spectral-element and adjoint methods: Geophysical Journal

International, 180, 433{462.

Tarantola, A., 1984, Linearized inversion of seismic reection data: Geophysical Prospect-

ing, 32, 998{1015.

||{, 2005, Inverse problem theory and methods for model para meter estimation: Society

for Industrial and Applied Mathematics.

Tikhonov, A. and V. Arsenin, 1977, Solution of ill-posed problems: Winston, Washington,

DC.

van den Berg, P., A. Abubakar, and J. Fokkema, 2003, Multiplicative regularization for

contrast pro�le inversion: Radio Science,38, 23.1{23.10.

van den Berg, P. M., A. L. van Broekhoven, and A. Abubakar, 1999, Extended contrast

source inversion: Inverse Problems,15, 1325{1314.

Virieux, J. and S. Operto, 2009, An overview of full waveform inversion in exploration

geophysics: Geophysics,74, WCC127{WCC152.

30
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Figure 1: (a) The true Vp velocity model which is a small part of the Marmousi model and

the acquisition geometry; (b) initial model for inversion which is a smooth model of the

true model; (c) the prior model created by linear distance weighted interpolation in the x

direction between the exact values inside two exploration wells and then gently smoothed.

Figure 2: Seismograms of pressure data for the source located almost at the center of the

Marmousi model x = 1 :4 km: (a) recorded inside the true model, (b) calculated inside

the smooth initial model, (c) calculated inside the interpolated velocity model, and (d)

computed inside the �nal model obtained through our dynamic approach.

Figure 3: Two types of prior weighting model used for regularized inversion: (a) model A,

the Gaussian function varying only in the x direction between two wells with maximum

value at the center of model, and (b) model B, the same variation in x complemented by a

quadratic evolution in the z direction (the Gaussian lateral variation could be seen nowin

the undulation of the white interface).
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Figure 4: The recoveredVp models by FWI and two QC vertical logs passing through the

two target areas at x = 0 :65 km and x = 2 :3 km, (a) reconstructed model starting from

the smooth initial model and without a prior model, small � 1 and � 2 = 0; (b) two vertical

logs corresponding to the model (a); (c) reconstructed model starting from the smooth

initial model and with the prior model, small � 1, �xed � 2, the prior weighting model A and

the ratio between prior-model and data mis�t terms  = 1 � 10� 2; (d) two vertical logs

corresponding to the model (c); (e) reconstructed model starting from the smooth initial

model and with the prior model, small � 1, �xed � 2 same as case (c), theprior weighting

model B. Note the  ratio is now decreased to 3� 10� 3; (f) two vertical logs corresponding

to the model (e); (g) reconstructed model starting from the smooth initial model and with

the prior model, small � 1, initial value of  = 3 � 10� 3, the prior weighting model B and

using the dynamic prior approach. The prior model is removed from the inversion at the

end of the procedure; (h) two vertical logs corresponding tothe model (g).

Figure 5: At �rst iteration of optimization, the absolute va lue of (a) the data-term gradient,

(b) the prior-model term gradient , (c) the ratio between pri or-model and data gradients,

in case of using the prior weighting model A; (d) and (e) same as (b) and (c) respectively,

but in case of using the prior weighting model B.

Figure 6: The recoveredVp model by standard FWI starting from an initial model equal to

the interpolated velocity model, small � 1 and � 2 = 0.
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Figure 7: Evolution of (a) the data objective function, (b) t he model objective function,

and (c) � 2 value with iterations in case of using the dynamic approach.Note that (a) and

(b) curves are shown in logarithmic scale.

Figure 8: Comparison of the total objective function curves in case of using the standard

FWI and the dynamic prior weighting FWI (a) for all iteration s, (b) shown at early itera-

tions.

Figure 9: Noisy seismograms of pressure data for the source located almost at the cen-

ter of the Marmousi model x = 1 :4 km; random Gaussian noise added to the synthetic

seismograms in bandwidth of 0� 30 Hz and SNR = 7 dB.
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Figure 10: The recoveredVp models by FWI of the noisy data and two QC vertical logs

passing through the two target areas atx = 0 :65 km and x = 2 :3 km, (a) reconstructed

model starting from the smooth initial model and without a pr ior model, small � 1 and

� 2 = 0; (b) two vertical logs corresponding to the model (a); (c) reconstructed model

starting from the smooth initial model and with the prior mod el, small � 1, �xed adapted

� 2 to have the ratio  = 3 � 10� 3 at �rst iteration, and the prior weighting model B; (d)

two vertical logs corresponding to the model (c); (e) reconstructed model starting from

the smooth initial model and with the prior model, small � 1, same initial � 2 before it is

decreased to zero (or same initial ratio = 3 � 10� 3), the prior weighting model B and

using the dynamic approach. The prior model is removed from the inversion at the end of

the procedure; (f) two vertical logs corresponding to the model (e).

Figure 11: Seismograms of pressure data for the source located almost at the center of the

Marmousi model x = 1 :4 km, recorded inside the true model with free surface condition

and using the receivers only at the surface.
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Figure 12: The recoveredVp models by FWI and two QC vertical logs passing through the

two target areas at x = 0 :65 km and x = 2 :3 km, in case offree surface condition and using

only the receivers at the surface, (a) reconstructed model starting from the smooth initial

model and without a prior model, small � 1 and � 2 = 0; (b) two vertical logs corresponding

to the model (a); (c) reconstructed model starting from the smooth initial model and with

interpolated velocity model (Figure 1.c) as a prior model, small � 1, initial � 2 value chosen

to have the ratio  = 3 � 10� 3 at �rst iteration, the prior weighting model B and using the

dynamic approach; (d) two vertical logs corresponding to the model (c).
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